The technique of solution of the magnetohydrodynamics tasks in quasi-Lagrangian variables
Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of numerical solution of one-dimensional magnetohydrodynamics (MHD) problems taking into account volume losses and sources of mass is presented. The governing MHD system of equations is written in quasi-Lagrangian variables defined by the initial distribution of the substance. A family of implicit completely conservative difference schemes is constructed. The developed technique has been approved by the numerical experiments with the tasks for which self-similar analytical solutions exist. The computational 1D model based on the quasi-Lagrangian approach may be useful as a means of non-consuming computations with partial taking into account of the effects caused by two- or three-dimensional motion of the substance.
Keywords: magnetic hydrodynamics, mass sources and sinks, difference scheme
Mots-clés : quasi-Lagrangian variables.
@article{MM_2021_33_6_a1,
     author = {A. S. Boldarev and V. A. Gasilov and A. Yu. Krukovskiy and Yu. A. Poveschenko},
     title = {The technique of solution of the magnetohydrodynamics tasks in {quasi-Lagrangian} variables},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a1/}
}
TY  - JOUR
AU  - A. S. Boldarev
AU  - V. A. Gasilov
AU  - A. Yu. Krukovskiy
AU  - Yu. A. Poveschenko
TI  - The technique of solution of the magnetohydrodynamics tasks in quasi-Lagrangian variables
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 17
EP  - 30
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a1/
LA  - ru
ID  - MM_2021_33_6_a1
ER  - 
%0 Journal Article
%A A. S. Boldarev
%A V. A. Gasilov
%A A. Yu. Krukovskiy
%A Yu. A. Poveschenko
%T The technique of solution of the magnetohydrodynamics tasks in quasi-Lagrangian variables
%J Matematičeskoe modelirovanie
%D 2021
%P 17-30
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a1/
%G ru
%F MM_2021_33_6_a1
A. S. Boldarev; V. A. Gasilov; A. Yu. Krukovskiy; Yu. A. Poveschenko. The technique of solution of the magnetohydrodynamics tasks in quasi-Lagrangian variables. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 17-30. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a1/

[1] E. V. Grabovski, P. V. Sasorov, A. P. Shevelko, V. V. Aleksandrov, S. N. Andreev, M. M. Basko, A. V. Branitski, A. N. Gritsuk, G. S. Volkov, Ya. N. Laukhin, K. N. Mitrofanov, V. G. Novikov, G. M. Oleinik, A. A. Samokhin, V. P. Smirnov, I. Yu. Tolstikhina, I. N. Frolov, O. F. Yakushev, “Radiative heating of thin Al foils by intense extreme ultraviolet radiation”, JETP Letters, 103:5 (2016), 350–356 | DOI

[2] E. Priest, T. Forbes, Magnetic Reconnection. MHD Theory and Applications, Cambridge University Press, 2000 | MR | Zbl

[3] Y. Ono, A. Morita, M. Katsurai, M. Yamada, “Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromacs”, Phys. Fluids B, 5 (1993), 3691–3701 | DOI

[4] A. G. Frank, S. Yu. Bogdanov, V. B. Burilina, “Kvaziodnomernye tokovye sloi v trekhmernykh magnitnykh konfiguratsiiakh”, Izv. AN. Ser. Fiz., 59 (1995), 41–52

[5] A. G. Frank, “Reconnection and currents sheet formation in 3D magnetic configurations”, Plasma Phys. Controlled Fusion, 41, suppl. 3A (1999), A687–A697 | DOI

[6] A. A. Samarskii, Yu. P. Popov, Raznostnye metody resheniia zadach gazovoi dinamiki, Nauka, M., 1992

[7] Yu. A. Poveshchenko, Yu. P. Popov, “Nekotorye zadachi gazovoi dinamiki pri nalichii istochnikov”, ZhVM i MF, 18:4 (1978), 1048 | MR

[8] A. Yu. Krukovskiy, V. A. Gasilov, Yu. A. Poveschenko, Yu. S. Sharova, L. V. Klochkova, “Implementing a Fully Conservative Lagrangian-Euler Scheme for Two-Dimensional Problems of Magnetic Gas Dynamics”, MM Simul., 12:5 (2020), 706–718 | MR | Zbl

[9] L. I. Sedov, Metody podobiia i razmernosti v mekhanike, Nauka, M., 1987, 430 pp. | MR