On breaking of a slow extraordinary wave in a cold magnetoactive plasma
Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of an external magnetic field on plane relativistic nonlinear oscillations and waves is studied. To initialize a slow extraordinary wave in a magnetoactive plasma, the algorithm of constructing the missing initial conditions based on the solution of a linear problem by the Fourier method is used. For the purpose of numerical simulation of a nonlinear wave, a scheme of the second-order accuracy finite difference method of the MacCormack type is constructed. It is shown that, when the external magnetic field is taken into account, the Langmuir oscillations are transformed into a slow extraordinary wave. In this case, the wave velocity increases with the growth of the external constant field, which contributes to the removal of energy from the initial region of localization of oscillations. For this reason, starting from a certain critical value of the external field, the breaking effect ceases to be observed, that is, a time-global smooth solution is formed.
Keywords: magnetoactive plasma, numerical simulation, Fourier method, finite difference method, slow extraordinary wave, breaking effect.
Mots-clés : plasma oscillations
@article{MM_2021_33_6_a0,
     author = {A. A. Frolov and E. V. Chizhonkov},
     title = {On breaking of a slow extraordinary wave in a cold magnetoactive plasma},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/}
}
TY  - JOUR
AU  - A. A. Frolov
AU  - E. V. Chizhonkov
TI  - On breaking of a slow extraordinary wave in a cold magnetoactive plasma
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 16
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/
LA  - ru
ID  - MM_2021_33_6_a0
ER  - 
%0 Journal Article
%A A. A. Frolov
%A E. V. Chizhonkov
%T On breaking of a slow extraordinary wave in a cold magnetoactive plasma
%J Matematičeskoe modelirovanie
%D 2021
%P 3-16
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/
%G ru
%F MM_2021_33_6_a0
A. A. Frolov; E. V. Chizhonkov. On breaking of a slow extraordinary wave in a cold magnetoactive plasma. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/

[1] A. I. Akhiezer, G. Ya. Lubarrskii, “K nelineinoi teorii kolebanii elektronnoi plazmy”, Doklady Akad. Nauk SSSR, 80:2 (1951), 193–195 | Zbl

[2] R. C. Davidson, Methods in nonlinear plasma theory, Acad. Press, N.Y. London, 1972, 356 pp. | MR

[3] A. I. Akhiezer, R. V. Polovin, “Theory of wave motion of an electron plasma”, Sov. Phys. JETP, 3:5 (1956), 696–705 | MR | Zbl

[4] E. V. Chizhonkov, Mathematical aspects of modelling oscillations and wake waves in plasma, CRC Press, Boca Raton, 2019, 293 pp. | Zbl

[5] A. F. Aleksandrov, L. S. Bogdankevich, A. A. Rukhadze, Principles of plasma electrodynamics, Springer, New York, 1984, 488 pp. | MR

[6] V. L. Ginzburg, A. A. Rukhadze, Volny v magnitoactivnoi plazme, Nauka, M., 1975, 256 pp.

[7] J. Borhanian, “Extraordinary electromagnetic localized structures in plasmas: Modulational instability, envelope solitons, and rogue waves”, Phys. Lett. A, 379:6 (2015), 595–602 | DOI | Zbl

[8] Moradi, “Energy behaviour of extraordinary waves in magnetized quantum plasmas”, Physics of Plasmas, 25 (2018), 052123, 5 pp. | DOI

[9] A. A. Frolov, E. V. Chizhonkov, “O chislennom modelirovanii medlennoi neobyknovennoi volny v magnitoaktivnoi plazme”, Vychisl. Metody Programm., 21 (2020), 420–439

[10] C. J.R. Sheppard, “Cylindrical lenses focusing and imaging: a review”, Applied Optics, 52:4 (2013), 538–545 | DOI | MR

[11] Yu. I. Shokin, N. N. Yanenko, Method differentialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985, 364 pp.

[12] D. A. Anderson, J. C. Tannehill, R. H. Pletcher, Computational fluid mechanics and heat transfer, Second edition, CRC Press, London, 1997, 816 pp. | MR

[13] E. V. Chizhonkov, “O skhemakh vtorogo poriadka tochnosti dlia modelirovaniia plazmennykh kolebanii”, Vychisl. Metody Programm., 21 (2020), 115–128

[14] E. V. Chizhonkov, A. A. Frolov, “Influence of electron temperature on breaking of plasma oscillations”, Russ. J. Num. Anal. Math. Modelling, 34:2 (2019), 71–84 | DOI | MR | Zbl

[15] C. Maity, Lagrangian fluid technique to study nonlinear plasma dynamics, PHD Thesis, Saha Institute of Nuclear Physics, Kolkata, India, 2013, 127 pp.

[16] P. N. Swarztrauber, “Vectorizing the FFTs”, Parallel Computations, ed. G. Rodrigue, Academic Press, New-York–London, 1982, 51–83 | DOI | MR

[17] O. S. Rozanova, E. V. Chizhonkov, “On the existence of a global solution of a hyperbolic problem”, Doklady Mathematics, 101:3 (2020), 254–256 | DOI

[18] O. S. Rozanova, E. V. Chizhonkov, “On the conditions for the breaking of oscillations in a cold plasma”, Z. Angew. Math. Phys., 72 (2021), 13, 18 pp. | DOI | MR | Zbl