Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_6_a0, author = {A. A. Frolov and E. V. Chizhonkov}, title = {On breaking of a slow extraordinary wave in a cold magnetoactive plasma}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--16}, publisher = {mathdoc}, volume = {33}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/} }
TY - JOUR AU - A. A. Frolov AU - E. V. Chizhonkov TI - On breaking of a slow extraordinary wave in a cold magnetoactive plasma JO - Matematičeskoe modelirovanie PY - 2021 SP - 3 EP - 16 VL - 33 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/ LA - ru ID - MM_2021_33_6_a0 ER -
A. A. Frolov; E. V. Chizhonkov. On breaking of a slow extraordinary wave in a cold magnetoactive plasma. Matematičeskoe modelirovanie, Tome 33 (2021) no. 6, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2021_33_6_a0/
[1] A. I. Akhiezer, G. Ya. Lubarrskii, “K nelineinoi teorii kolebanii elektronnoi plazmy”, Doklady Akad. Nauk SSSR, 80:2 (1951), 193–195 | Zbl
[2] R. C. Davidson, Methods in nonlinear plasma theory, Acad. Press, N.Y. London, 1972, 356 pp. | MR
[3] A. I. Akhiezer, R. V. Polovin, “Theory of wave motion of an electron plasma”, Sov. Phys. JETP, 3:5 (1956), 696–705 | MR | Zbl
[4] E. V. Chizhonkov, Mathematical aspects of modelling oscillations and wake waves in plasma, CRC Press, Boca Raton, 2019, 293 pp. | Zbl
[5] A. F. Aleksandrov, L. S. Bogdankevich, A. A. Rukhadze, Principles of plasma electrodynamics, Springer, New York, 1984, 488 pp. | MR
[6] V. L. Ginzburg, A. A. Rukhadze, Volny v magnitoactivnoi plazme, Nauka, M., 1975, 256 pp.
[7] J. Borhanian, “Extraordinary electromagnetic localized structures in plasmas: Modulational instability, envelope solitons, and rogue waves”, Phys. Lett. A, 379:6 (2015), 595–602 | DOI | Zbl
[8] Moradi, “Energy behaviour of extraordinary waves in magnetized quantum plasmas”, Physics of Plasmas, 25 (2018), 052123, 5 pp. | DOI
[9] A. A. Frolov, E. V. Chizhonkov, “O chislennom modelirovanii medlennoi neobyknovennoi volny v magnitoaktivnoi plazme”, Vychisl. Metody Programm., 21 (2020), 420–439
[10] C. J.R. Sheppard, “Cylindrical lenses focusing and imaging: a review”, Applied Optics, 52:4 (2013), 538–545 | DOI | MR
[11] Yu. I. Shokin, N. N. Yanenko, Method differentialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985, 364 pp.
[12] D. A. Anderson, J. C. Tannehill, R. H. Pletcher, Computational fluid mechanics and heat transfer, Second edition, CRC Press, London, 1997, 816 pp. | MR
[13] E. V. Chizhonkov, “O skhemakh vtorogo poriadka tochnosti dlia modelirovaniia plazmennykh kolebanii”, Vychisl. Metody Programm., 21 (2020), 115–128
[14] E. V. Chizhonkov, A. A. Frolov, “Influence of electron temperature on breaking of plasma oscillations”, Russ. J. Num. Anal. Math. Modelling, 34:2 (2019), 71–84 | DOI | MR | Zbl
[15] C. Maity, Lagrangian fluid technique to study nonlinear plasma dynamics, PHD Thesis, Saha Institute of Nuclear Physics, Kolkata, India, 2013, 127 pp.
[16] P. N. Swarztrauber, “Vectorizing the FFTs”, Parallel Computations, ed. G. Rodrigue, Academic Press, New-York–London, 1982, 51–83 | DOI | MR
[17] O. S. Rozanova, E. V. Chizhonkov, “On the existence of a global solution of a hyperbolic problem”, Doklady Mathematics, 101:3 (2020), 254–256 | DOI
[18] O. S. Rozanova, E. V. Chizhonkov, “On the conditions for the breaking of oscillations in a cold plasma”, Z. Angew. Math. Phys., 72 (2021), 13, 18 pp. | DOI | MR | Zbl