Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_5_a7, author = {I. V. Popov}, title = {Modeling wave processes in elastic media based on conservative difference schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {107--124}, publisher = {mathdoc}, volume = {33}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a7/} }
I. V. Popov. Modeling wave processes in elastic media based on conservative difference schemes. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 107-124. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a7/
[1] A. N. Parshikov, Chislennyi metod SPH, ispolzuiushchii sootnosheniia raspada razryvov, i ego primenenie v mekhanike deformiruemykh geterogennykh sred, Diss. d.f.-m.n., FGBUN Obieedinennyi institut vysokikh temperatur RAN (OIVT RAN), M., 2013, 202 pp.
[2] V. I. Erofeev, A. V. Leonteva, A. V. Shekoian, “Udarnye volny v termouprugoi srede s tochechnymi defektami”, Zhurnal tekhnicheskoi fiziki, 90:1 (2020), 26–32 | MR
[3] E. Iu. Vitikhin, Issledovanie kolebatelnykh i volnovykh protsessov v termouprugoi srede s uchetom vremeni relaksatsii teplovogo potoka, Po mater. kandid. diss., FGAOU S. Peterburgskii politekhnicheskii universitet Petra Velikogo, 2017, 114 pp.
[4] A. V. Favorskaia, I. B. Petrov, “Issledovanie setochno-kharakteristicheskikh metodov povysheniia poriadkov tochnosti na nestrukturirovannykh setkakh”, Sibirskii zhurnal vychislitelnoi matematiki, 19:2 (2016), 223–233 | MR | Zbl
[5] O. Zenkevich, K. Morgan, Konechnye elementy i approksimatsiia, Mir, M., 1986, 2138 pp. | MR
[6] A. A. Samarskii, P. N. Vabishchevich, Vychislitelnaia teploperedacha, Librokom, M., 2009, 784 pp.
[7] A. V. Babkin, V. V. Selivanov, Prikladnaia mekhanika sploshnykh sred, Uch. vtuzov, v. 1, Osnovy mekhaniki sploshnykh sred, Izd-vo MGTU im. N.E. Baumana, M., 2004, 376 pp.
[8] L. D. Landau, E. M. Lifshitz, Theoretical physics, v. 7, Theory of elasticity, Pergamon press, Oxford, 1970, 195 pp. | MR | MR
[9] B. Boli, Dzh. Ueiner, Teoriia temperaturnykh napriazhenii, Mir, M., 1964, 520 pp.
[10] I. P. Tsygvintsev, A. Iu. Krukovskii, Iu. A. Poveshchenko, V. A. Gasilov, D. S. Boikov, S. B. Popov, “Odnorodnye raznostnye skhemy dlia sopriazhennykh zadach gidrodinamiki i uprugosti”, Uch. zap. Kazan. un-ta. Ser. Fiz. matem. nauki, 161, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2019, 377–392