Modeling wave processes in elastic media based on conservative difference schemes
Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 107-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of numerical calculation of the propagation of deformations in elastic heatconducting media are considered. To solve this class of problems, implicit numerical schemes are proposed for the equations of thermal elasticity and thermal conductivity on unstructured triangular and tetrahedral meshes. As a result of theoretical studies, it is shown that the proposed schemes have the properties of self-adhesion and signdefiniteness of difference operators, as well as conservativeness. The results of numerical experiments are also presented, confirming the effectiveness of the developed technique.
Keywords: thermoelasticity, heat conductivity, numerical schemes on unstructured meshes.
@article{MM_2021_33_5_a7,
     author = {I. V. Popov},
     title = {Modeling wave processes in elastic media based on conservative difference schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--124},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a7/}
}
TY  - JOUR
AU  - I. V. Popov
TI  - Modeling wave processes in elastic media based on conservative difference schemes
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 107
EP  - 124
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a7/
LA  - ru
ID  - MM_2021_33_5_a7
ER  - 
%0 Journal Article
%A I. V. Popov
%T Modeling wave processes in elastic media based on conservative difference schemes
%J Matematičeskoe modelirovanie
%D 2021
%P 107-124
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a7/
%G ru
%F MM_2021_33_5_a7
I. V. Popov. Modeling wave processes in elastic media based on conservative difference schemes. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 107-124. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a7/

[1] A. N. Parshikov, Chislennyi metod SPH, ispolzuiushchii sootnosheniia raspada razryvov, i ego primenenie v mekhanike deformiruemykh geterogennykh sred, Diss. d.f.-m.n., FGBUN Obieedinennyi institut vysokikh temperatur RAN (OIVT RAN), M., 2013, 202 pp.

[2] V. I. Erofeev, A. V. Leonteva, A. V. Shekoian, “Udarnye volny v termouprugoi srede s tochechnymi defektami”, Zhurnal tekhnicheskoi fiziki, 90:1 (2020), 26–32 | MR

[3] E. Iu. Vitikhin, Issledovanie kolebatelnykh i volnovykh protsessov v termouprugoi srede s uchetom vremeni relaksatsii teplovogo potoka, Po mater. kandid. diss., FGAOU S. Peterburgskii politekhnicheskii universitet Petra Velikogo, 2017, 114 pp.

[4] A. V. Favorskaia, I. B. Petrov, “Issledovanie setochno-kharakteristicheskikh metodov povysheniia poriadkov tochnosti na nestrukturirovannykh setkakh”, Sibirskii zhurnal vychislitelnoi matematiki, 19:2 (2016), 223–233 | MR | Zbl

[5] O. Zenkevich, K. Morgan, Konechnye elementy i approksimatsiia, Mir, M., 1986, 2138 pp. | MR

[6] A. A. Samarskii, P. N. Vabishchevich, Vychislitelnaia teploperedacha, Librokom, M., 2009, 784 pp.

[7] A. V. Babkin, V. V. Selivanov, Prikladnaia mekhanika sploshnykh sred, Uch. vtuzov, v. 1, Osnovy mekhaniki sploshnykh sred, Izd-vo MGTU im. N.E. Baumana, M., 2004, 376 pp.

[8] L. D. Landau, E. M. Lifshitz, Theoretical physics, v. 7, Theory of elasticity, Pergamon press, Oxford, 1970, 195 pp. | MR | MR

[9] B. Boli, Dzh. Ueiner, Teoriia temperaturnykh napriazhenii, Mir, M., 1964, 520 pp.

[10] I. P. Tsygvintsev, A. Iu. Krukovskii, Iu. A. Poveshchenko, V. A. Gasilov, D. S. Boikov, S. B. Popov, “Odnorodnye raznostnye skhemy dlia sopriazhennykh zadach gidrodinamiki i uprugosti”, Uch. zap. Kazan. un-ta. Ser. Fiz. matem. nauki, 161, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2019, 377–392