Mesh construction algorithm based on TetGen for modeling the external flow around an axisymmetric model
Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 91-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

An original algorithm for constructing a computational grid for modeling the external gas-dynamic flow around an axisymmetric model using a TetGen grid generator is described. The algorithm gives opportunity to build unstructured tetrahedral meshes in the space around the model in such a way that the cells near the surface have a shape close to the regular tetrahedrons. On such meshes, the approximation of macroscopic equations is carried out more precisely than on meshes containing tetrahedral cells with small angles. The increased accuracy of the approximation in the boundary layer region can be an important factor in studying the phenomena of flow separation and laminar-turbulent transition. To build such a spatial grid, at the initial stage, a grid is built on the surface of the model. The cells of the surface grid have a shape close to squares. At the second stage, the TetGen generator builds a spatial tetrahedral grid based on the surface grid, using Delaunay triangulation, while introducing additional points near the model surface. These points give opportunity to obtain tetrahedral cells of a fairly regular shape in the boundary layer region. The proposed algorithm is quite versatile and can be used for models of any axisymmetric shape, the profile of which is set as an array of radius values depending on the cross-section. The spatial grid gives opportunity to simulate the external flow for non-zero angles of attack. The paper presents an example of calculating the subsonic flow around the model based on a quasi-gas-dynamic algorithm, which demonstrates the occurrence of a vortex region in the tail section. This region shows the possibility of studying non-stationary flows.
Keywords: grid generators, tetrahedral grids
Mots-clés : quasi-gas-dynamic algorithm.
@article{MM_2021_33_5_a6,
     author = {I. A. Shirokov},
     title = {Mesh construction algorithm based on {TetGen} for modeling the external flow around an axisymmetric model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--106},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a6/}
}
TY  - JOUR
AU  - I. A. Shirokov
TI  - Mesh construction algorithm based on TetGen for modeling the external flow around an axisymmetric model
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 91
EP  - 106
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a6/
LA  - ru
ID  - MM_2021_33_5_a6
ER  - 
%0 Journal Article
%A I. A. Shirokov
%T Mesh construction algorithm based on TetGen for modeling the external flow around an axisymmetric model
%J Matematičeskoe modelirovanie
%D 2021
%P 91-106
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a6/
%G ru
%F MM_2021_33_5_a6
I. A. Shirokov. Mesh construction algorithm based on TetGen for modeling the external flow around an axisymmetric model. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 91-106. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a6/

[1] O. Hassan, K. Morgan, “Unstructured tetrahedral mesh generation for three-dimensional viscous flows”, Int. journal for numerical methods in engineering, 39 (1996), 549–576 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] S. N. Borovikov, I. A. Kriukov, I. E. Ivanov, “Postroenie nereguliarnykh treugolnykh setok na krivolineinykh graniakh na osnove trianguliatsii Delone”, Matematicheskoe modelirovanie, 17:8 (2005), 31–45 | MR | Zbl

[3] S. T. Surzhikov, “Analiticheskie metody postroeniia konechno-raznostnykh setok dlia rascheta aerotermodinamiki spuskaemykh kosmicheskikh apparatov”, Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie», 2004, no. 2, 24–50

[4] TetGen: A quality tetrahedral mesh generator, http://tetgen.berlios.de/ | MR

[5] S. A. Sukov, “Metody generatsii tetraedralnykh setok i ikh programmnye realizatsii”, Keldysh Institute preprints, 2015, 023, 22 pp. http://library.keldysh.ru/preprint.asp?id=2015-23

[6] S. V. Poliakov, A. G. Churbanov, “Svobodnoe programmnoe obespechenie dlia matematicheskogo modelirovaniia”, Keldysh Institute preprints, 2019, 145, 32 pp. http://library.keldysh.ru/preprint.asp?id=2019-145

[7] M. K. Ermakov, A. S. Kriuchkova, “Generatsiia nestrukturirovannykh tetraedralnykh setok dlia obtekaniia letatelnykh apparatov na osnove otkrytykh paketov”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 21:2 (2020) http://chemphys.edu.ru/issues/2020-21-2/articles/897/

[8] I. A. Shirokov, T. G. Elizarova, “O vliianii struktury prostranstvennoi setki na rezultaty chislennogo modelirovaniia udarnoi volny v zadache obtekaniia trekhmernoi modeli”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 20:1 (2019)

[9] I. A. Shirokov, “Issledovanie osobennostei dozvukovogo obtekaniia osesimmetrichnoi modeli na osnove reguliarizovannykh uravnenii”, Sbornik tezisov nauchnoi konferentsii «Lomonosovskie chteniia». Sektsiia «Vychislitelnaia matematika i kibernetika» (15-25 aprelia 2019), Izd. otdel VMK MGU, M.; MAKS Press, 2019, 115

[10] I. A. Shirokov, “Postroenie tetraedralnoi raschetnoi setki dlia modelirovaniia obtekaniia treugolnogo kryla”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 21:1 (2020) http://chemphys.edu.ru/issues/2020-21-1/articles/883/

[11] A. V. Dovgal, B. Yu. Zanin, A. M. Sorokin, “Stability of the laminar flow on a body of revolution at incidence”, Thermophysics and aeromechanics, 21:4 (2014), 401–406 | DOI

[12] B. Yu. Zanin, A. V. Dovgal, A. M. Sorokin, “Visualization of boundary layer separation on an axisymmetric body”, AIP Conference Proceedings, 2027 (2018), 030131 | DOI

[13] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barselona, 2008, 298 pp. | MR

[14] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer, Dordrecht, 2009 | MR | Zbl

[15] Iu. V. Sheretov, Reguliarizovannye uravneniia gidrodinamiki, Tverskoi gosudarstvennyi universitet, Tver, 2016, 222 pp.

[16] T. G. Elizarova, I. A. Shirokov, Reguliarizovannye uravneniia i primery ikh ispolzovaniia pri modelirovanii gazodinamicheskikh techenii, MAKS Press, M., 2017, 136 pp.

[17] T. A. Kudryashova, S. V. Polyakov, A. A. Sverdlin, “Calculation of gas flow parameters around reentry vehicle”, Mathematical Models and Comp. Simulations, 1:4 (2009), 445–452 | DOI | MR | Zbl

[18] K-100 System, , Keldysh Institute of Applied Mathematics RAS, M. http://www.kiam.ru/MVS/resourses/k100.html

[19] M. V. Kraposhin, E. V. Smirnova, T. G. Elizarova, M. A. Istomina, “Development of a new OpenFOAM solver using regularized gas-dynamic equations”, Computers and Fluids, 166 (2018), 163–175 | DOI | MR | Zbl