Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_5_a5, author = {A. S. Yuditskaya and S. S. Tkachev}, title = {Comparative analysis of methods for modeling the gravitational potential of complex shape bodies}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {78--90}, publisher = {mathdoc}, volume = {33}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a5/} }
TY - JOUR AU - A. S. Yuditskaya AU - S. S. Tkachev TI - Comparative analysis of methods for modeling the gravitational potential of complex shape bodies JO - Matematičeskoe modelirovanie PY - 2021 SP - 78 EP - 90 VL - 33 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a5/ LA - ru ID - MM_2021_33_5_a5 ER -
%0 Journal Article %A A. S. Yuditskaya %A S. S. Tkachev %T Comparative analysis of methods for modeling the gravitational potential of complex shape bodies %J Matematičeskoe modelirovanie %D 2021 %P 78-90 %V 33 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a5/ %G ru %F MM_2021_33_5_a5
A. S. Yuditskaya; S. S. Tkachev. Comparative analysis of methods for modeling the gravitational potential of complex shape bodies. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 78-90. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a5/
[1] X. Zeng et al., “Study on the connection between the rotating mass dipole and natural elongated bodies”, Astrophys. Space Sci., 356:1 (2015), 29–42 | DOI
[2] V. I. Nikonov, Gravitatsionnye polia malykh nebesnykh tel, OOO Belyi veter, M., 2020, 68 pp.
[3] E. Herrera-Sucarrat, The full problem of two and three bodies: application to asteroids and binaries, Ph. D. Dissertation, University of Surrey, Guildford, 2012
[4] J. L. Junkins, “Investigation of Finite-Element Representations of the Geopotential”, AIAA J., 14:6 (1976), 803–808 | DOI | MR | Zbl
[5] J. L. Junkins, G. W. Miller, J. R. Jancaitis, “A weighting function approach to modeling of irregular surfaces”, J. Geophys. Res., 78:11 (1973), 1794–1803 | DOI
[6] R. C. Engels, J. L. Junkins, “Local Representation of the Geopotential by Weighted Orthonormal Polynomials”, J. Guid. Control, 3:1 (1980), 55–61 | DOI | Zbl
[7] G. Beylkin, R. Cramer, “Toward multiresolution estimation and efficient representation of gravitational fields”, Celest. Mech. Dyn. Astron., 84:1 (2002), 87–104 | DOI | Zbl
[8] F. Lekien, J. Marsden, “Tricubic interpolation in three dimensions”, Int. J. Numer. Methods Eng., 63:3 (2005), 455–471 | DOI | MR | Zbl
[9] A. Colombi, A. N. Hirani, B. F. Villac, “Adaptive Gravitational Force Representation for Fast Trajectory Propagation Near Small Bodies”, J. Guid. Control. Dyn., 31:4 (2008), 1041–1051 | DOI | MR
[10] R. A. Werner, “The gravitational potential of a homogeneous polyhedron or don't cut corners”, Celest. Mech. Dyn. Astron., 59:3 (1994), 253–278 | DOI | Zbl
[11] T. G. G. Chanut, S. Aljbaae, V. Carruba, “Mascon gravitation model using a shaped polyhedral source”, Mon. Not. R. Astron. Soc., 450:4 (2015), 3742–3749 | DOI
[12] D. Vallado, Fundamentals of astrodynamics and applications, 1997, 945 pp. | MR
[13] 3D Asteroid Catalogue, (Access date: 11/15/2020) https://3d-asteroids.space/
[14] Gmsh, (Access date: 10/02/2020) https://gmsh.info/