Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_5_a4, author = {V. G. Zadorozhny and A. S. Chebotarev and E. E. Dikarev}, title = {Lanchester's stochastic model of battle actions}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {57--77}, publisher = {mathdoc}, volume = {33}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/} }
TY - JOUR AU - V. G. Zadorozhny AU - A. S. Chebotarev AU - E. E. Dikarev TI - Lanchester's stochastic model of battle actions JO - Matematičeskoe modelirovanie PY - 2021 SP - 57 EP - 77 VL - 33 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/ LA - ru ID - MM_2021_33_5_a4 ER -
V. G. Zadorozhny; A. S. Chebotarev; E. E. Dikarev. Lanchester's stochastic model of battle actions. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 57-77. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/
[1] F. Lanchester, Aircraft in Warfare: the Dawn of the Fourth Arm, Constable and Co, London, 1916, 243 pp. ; no. 7; no. 8; no. 9 | Zbl
[2] M. Osipov, “Vliianie chislennosti srazhaiushchikhsia storon na ikh poteri”, Voennyi sbornic, 1915, no. 6, 59–74; no. 7, 25-30; no. 8, 31–40; no. 9, 25–37
[3] D. A. Novikov, “Hierarchical models of combat”, Autom. Remote Control, 74:10 (2013), 1733–1752 | DOI | MR | Zbl
[4] E. S. Venttsel, Vvedenie v issledovanie operatsii, Sov. Radio, M., 1964, 173 pp.
[5] V. A. Gordin, Differeentsialnye i raznostnye uravneniia. Kakie iavleniia oni opisyvaiut i kak ikh rechat, Izd. Dom Vysshei shkoly ekonomiki, M., 2016, 531 pp.
[6] G. A. Vasilev, V. G. Kazakov, A. F. Tarakanov, “Teoretiko-igrovoe modelirovanie protivostoianiia storon na osnove refleksivnogo upravleniia”, Problemy upravleniia, 2018, no. 5, 49–55 | MR
[7] V. V. Shumov, “Ierarkhiia modelei boevykh deistvii i pogranichnykh konfliktov”, UBS, 79 (2019), 122–130
[8] V. V. Shumov, “Ierarkhicheskie i matrichnye modeli pogranichnoi bezopasnosti”, Matematicheskoe modelirovanie, 26:3 (2014), 137–148 | Zbl
[9] N. J. Mackay, “When Lanchester met Richardson, the outcome was Stalemate: a parable for mathematical models of insurgency”, J. of Operational Res. Soc., 66:2 (2015), 191–201 | DOI
[10] A. V. Ganicheva, “Modifitsirovannaia model Lanchestera boevykh deistvii”, Avtomatizatsiia protsessov upravleniia, 58:4 (2019), 72–81
[11] M. Kress, J. P. Caulkins, G. Feichtinger, D. Grass, A. Seidl, “Lanchester mode for three-way combat”, European Journal of Operational Research, 264:1 (2018), 46–54 | DOI | MR | Zbl
[12] D. A. Novikov, “Ierarkhicheskie modeli voennykh deistvii”, Upravlenie bolshimi sistemami, 37 (2012), 25–62
[13] V. Iu. Chuev, I. V. Dubograi, “Veroiatnaia model boia mnogochislennykh gruppirovok pri lineinykh zavisimistiakh effektivnykh skorostrelnostei boevykh edinits storon ot vremeni boia”, Matem. modelirovanie i chislennye metody, 2018, no. 2, 122–132
[14] V. Iu. Chuev, “Veroiatnaia model boia mnogochislennykh gruppirovok”, Vestnik MGTU im. N.E. Baumana. Ser. Estest. nauki, 2011, Spets. vyp. Matem. modelirovanie, 223–232
[15] A. V. Fursikov, “Momentnaia teoriia dlia uravnenii Nav'e-Stoksa so sluchainoi pravoi chastiu”, Izv. RAN. Ser. Matem., 56 (1992), 1273–1315 | Zbl
[16] A. V. Fursikov, “Razreshchimost tsepochki uravnenii dlia prostranstvenno-vremennykh momentov”, Matem. Sb., 1984, no. 3 (11), 548–553 | Zbl
[17] G. Adomian, Stochastic Systems, Mat. In Sci. and Eng., 169, Akad. Pres, 2014, 351 pp. | MR | MR
[18] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, M.–Izhevsk, 2006, 316 pp.
[19] V. G. Zadorozhnii, M. A. Konovalova, “Multiplikativno vozmushchennoe sluchainym shumom differentsialnoe uravnenie v banakhovom prostranstve”, Sovremennaia matematika. Fundamentalnye napravleniia, 63, no. 4, 2017, 1–16 | MR