Lanchester's stochastic model of battle actions
Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 57-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of interaction between the two opposing parties in the form of a system of differential equations (Lanchester) is considered, the coefficients of which are random processes set by characteristic functionality. The task is to find the first immediate functions of the solution. This task boils down to a deterministic system of differential equations with ordinary and variation derivatives. There are clear formulas for the first two momentary functions of the stochastic system solution. Tasks with gauss and evenly distributed random odds are considered. The numerical calculations and graphs of the behavior of mathematical expectation and dispersion function are given.
Keywords: Lanchester model, variation derivative, characteristic functional, moment functions
Mots-clés : Gauss random process.
@article{MM_2021_33_5_a4,
     author = {V. G. Zadorozhny and A. S. Chebotarev and E. E. Dikarev},
     title = {Lanchester's stochastic model of battle actions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--77},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/}
}
TY  - JOUR
AU  - V. G. Zadorozhny
AU  - A. S. Chebotarev
AU  - E. E. Dikarev
TI  - Lanchester's stochastic model of battle actions
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 57
EP  - 77
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/
LA  - ru
ID  - MM_2021_33_5_a4
ER  - 
%0 Journal Article
%A V. G. Zadorozhny
%A A. S. Chebotarev
%A E. E. Dikarev
%T Lanchester's stochastic model of battle actions
%J Matematičeskoe modelirovanie
%D 2021
%P 57-77
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/
%G ru
%F MM_2021_33_5_a4
V. G. Zadorozhny; A. S. Chebotarev; E. E. Dikarev. Lanchester's stochastic model of battle actions. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 57-77. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a4/

[1] F. Lanchester, Aircraft in Warfare: the Dawn of the Fourth Arm, Constable and Co, London, 1916, 243 pp. ; no. 7; no. 8; no. 9 | Zbl

[2] M. Osipov, “Vliianie chislennosti srazhaiushchikhsia storon na ikh poteri”, Voennyi sbornic, 1915, no. 6, 59–74; no. 7, 25-30; no. 8, 31–40; no. 9, 25–37

[3] D. A. Novikov, “Hierarchical models of combat”, Autom. Remote Control, 74:10 (2013), 1733–1752 | DOI | MR | Zbl

[4] E. S. Venttsel, Vvedenie v issledovanie operatsii, Sov. Radio, M., 1964, 173 pp.

[5] V. A. Gordin, Differeentsialnye i raznostnye uravneniia. Kakie iavleniia oni opisyvaiut i kak ikh rechat, Izd. Dom Vysshei shkoly ekonomiki, M., 2016, 531 pp.

[6] G. A. Vasilev, V. G. Kazakov, A. F. Tarakanov, “Teoretiko-igrovoe modelirovanie protivostoianiia storon na osnove refleksivnogo upravleniia”, Problemy upravleniia, 2018, no. 5, 49–55 | MR

[7] V. V. Shumov, “Ierarkhiia modelei boevykh deistvii i pogranichnykh konfliktov”, UBS, 79 (2019), 122–130

[8] V. V. Shumov, “Ierarkhicheskie i matrichnye modeli pogranichnoi bezopasnosti”, Matematicheskoe modelirovanie, 26:3 (2014), 137–148 | Zbl

[9] N. J. Mackay, “When Lanchester met Richardson, the outcome was Stalemate: a parable for mathematical models of insurgency”, J. of Operational Res. Soc., 66:2 (2015), 191–201 | DOI

[10] A. V. Ganicheva, “Modifitsirovannaia model Lanchestera boevykh deistvii”, Avtomatizatsiia protsessov upravleniia, 58:4 (2019), 72–81

[11] M. Kress, J. P. Caulkins, G. Feichtinger, D. Grass, A. Seidl, “Lanchester mode for three-way combat”, European Journal of Operational Research, 264:1 (2018), 46–54 | DOI | MR | Zbl

[12] D. A. Novikov, “Ierarkhicheskie modeli voennykh deistvii”, Upravlenie bolshimi sistemami, 37 (2012), 25–62

[13] V. Iu. Chuev, I. V. Dubograi, “Veroiatnaia model boia mnogochislennykh gruppirovok pri lineinykh zavisimistiakh effektivnykh skorostrelnostei boevykh edinits storon ot vremeni boia”, Matem. modelirovanie i chislennye metody, 2018, no. 2, 122–132

[14] V. Iu. Chuev, “Veroiatnaia model boia mnogochislennykh gruppirovok”, Vestnik MGTU im. N.E. Baumana. Ser. Estest. nauki, 2011, Spets. vyp. Matem. modelirovanie, 223–232

[15] A. V. Fursikov, “Momentnaia teoriia dlia uravnenii Nav'e-Stoksa so sluchainoi pravoi chastiu”, Izv. RAN. Ser. Matem., 56 (1992), 1273–1315 | Zbl

[16] A. V. Fursikov, “Razreshchimost tsepochki uravnenii dlia prostranstvenno-vremennykh momentov”, Matem. Sb., 1984, no. 3 (11), 548–553 | Zbl

[17] G. Adomian, Stochastic Systems, Mat. In Sci. and Eng., 169, Akad. Pres, 2014, 351 pp. | MR | MR

[18] V. G. Zadorozhnii, Metody variatsionnogo analiza, RKhD, M.–Izhevsk, 2006, 316 pp.

[19] V. G. Zadorozhnii, M. A. Konovalova, “Multiplikativno vozmushchennoe sluchainym shumom differentsialnoe uravnenie v banakhovom prostranstve”, Sovremennaia matematika. Fundamentalnye napravleniia, 63, no. 4, 2017, 1–16 | MR