Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_5_a3, author = {M. E. Ladonkina and O. A. Nekliudova and V. F. Tishkin}, title = {Hybrid numerical flux for solving the problems of supersonic flow of solid bodies}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {47--56}, publisher = {mathdoc}, volume = {33}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a3/} }
TY - JOUR AU - M. E. Ladonkina AU - O. A. Nekliudova AU - V. F. Tishkin TI - Hybrid numerical flux for solving the problems of supersonic flow of solid bodies JO - Matematičeskoe modelirovanie PY - 2021 SP - 47 EP - 56 VL - 33 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a3/ LA - ru ID - MM_2021_33_5_a3 ER -
%0 Journal Article %A M. E. Ladonkina %A O. A. Nekliudova %A V. F. Tishkin %T Hybrid numerical flux for solving the problems of supersonic flow of solid bodies %J Matematičeskoe modelirovanie %D 2021 %P 47-56 %V 33 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a3/ %G ru %F MM_2021_33_5_a3
M. E. Ladonkina; O. A. Nekliudova; V. F. Tishkin. Hybrid numerical flux for solving the problems of supersonic flow of solid bodies. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 47-56. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a3/
[1] A. V. Rodionov, “Artificial viscosity to cure the shock instability in high-order Godunov-type schemes”, Computers and Fluids, 190 (2019), 77–97 | DOI | MR | Zbl
[2] M. Pandolfi, D. D'Ambrosio, “Numerical Instabilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon”, J. of Computational Physics, 166 (2001), 271–301 | DOI | MR | Zbl
[3] S. Osher, F. Solomon, “Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws”, Mathematics of computation, 38 (1982), 339–374 | DOI | MR | Zbl
[4] M. Pandolfi, “A contribution to the numerical prediction of unsteady flows”, AIAA journal, 22 (1984), 602–610 | DOI | Zbl
[5] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, Journal of Computational Physics, 43 (1981), 357–372 | DOI | MR | Zbl
[6] S. K. Godunov, “A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics”, Sbornik: Mathematics, 47:8-9 (1959), 357–393 | MR | Zbl
[7] E. F. Toro, Riemann solvers and numerical methods for fluid dynamics, Third Edition, Springer, 2010 | MR
[8] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Comp. Mathematics and Mathematical Physics, 1:2 (1962), 304–320 | DOI | MR
[9] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | DOI | MR | Zbl
[10] B. Van Leer, Upwind and High-Resolution Schemes, Springer, 1997, 80–89
[11] M.-S. Liou, “A Sequel to AUSM: AUSM$^+$”, J. of Comp. Physics, 129 (1996), 364–382 | DOI | MR | Zbl
[12] H. Nishikawa, K. Kitamura, “Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers”, J. of Computational Physics, 227 (2008), 2560–2581 | DOI | MR | Zbl
[13] S. Guo, W. Q. Tao, “A hybrid flux splitting method for compressible flow”, Numerical Heat Transfer, Part B: Fundamentals, 73 (2018), 33–47 | DOI
[14] L. J. Hu, L. Yuan, “A robust hybrid HLLC-force scheme for curing numerical shock instability”, Applied Mechanics and Materials, 577 (2014), 749–753 | DOI
[15] A. Ferrero, D. D'Ambrosio, “An Hybrid Numerical Flux for Supersonic Flows with Ap-plication to Rocket Nozzles”, 17$^{\text{TH}}$ International Conference of Numerical Analysis and Applied Mathematics (Sept. 2019, Rhodes, Greece), 23–28
[16] P. Woodward, Ph. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, J. of Comp. Phys., 54:1 (1984), 115–173 | DOI | MR | Zbl
[17] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection-Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[18] F. Bassi, S. Rebay, “Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations”, Int. J. Numer. Meth. Fluids, 40 (2002), 197–207 | DOI | MR | Zbl
[19] K. Yasue, M. Furudate, N. Ohnishi, K. Sawada, “Implicit Discontinuous Galerkin Method for RANS Simulation Utilizing Pointwise Relaxation Algorithm”, Comm. Comp. Phys., 7:3 (2010), 510–533 | DOI | MR | Zbl
[20] R. J. Spiteri, S. J. Ruuth, “A New Class of Optimal High-Order Strong Stability-Preserving Time Discretization Methods”, SIAM J. Numer. Anal., 40:2 (2002), 469–491 | DOI | MR | Zbl
[21] M. M. Krasnov, P. A. Kuchugov, M. E. Ladonkina, V. F. Tishkin, “Discontinuous Galerkin method on three-dimensional tetrahedral meshes. The usage of the operator programming method”, Math. Models Comput. Simul., 9:5 (2017), 529–543 | DOI | MR | Zbl
[22] M. E. Ladonkina, O. A. Nekliudova, V. V. Ostapenko, V. F. Tishkin, “On the accuracy of the discontinuous Galerkin method in the calculation of shock waves”, JCM, 58:8 (2018), 148–156 | MR