$L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers
Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 16-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study explicit two-level finite-difference schemes on staggered meshes for two known regularizations of $\mathrm{1D}$ barotropic gas dynamics equations including schemes with discretizations in $x$ that possess the dissipativity property with respect to the total energy. We derive criterions of $L^2$-dissipativity in the Cauchy problem for their linearizations at a constant solution with zero background velocity. We compare the criterions for schemes on non-staggered and staggered meshes. Also we consider the case of $\mathrm{1D}$ Navier–Stokes equations without artificial viscosity coefficient. For one of their regularizations, the maximal time step is guaranteed for the choice of the regularization parameter $\tau_{opt}=\nu_*/c^2_*$, where $c_*$ and $\nu_*$ are the background sound speed and kinematic viscosity; such a choice does not depend on the meshes. To analyze the case of the $\mathrm{1D}$ Navier–Stokes–Cahn–Hilliard equations, we derive and verify the criterions for $L^2$-dissipativity and stability for an explicit finite-difference scheme approximating a nonstationary $4^{\text{th}}$-order in $x$ equation that includes a $2^{\text{nd}}$-order term in $x$. The obtained criteria may be useful to compute flows at small Mach numbers.
Keywords: $L^2$-dissipativity, explicit finite-difference schemes, staggered meshes, gas dynamics equations
Mots-clés : Navier–Stokes–Cahn–Hilliard equations.
@article{MM_2021_33_5_a1,
     author = {A. A. Zlotnik and T. A. Lomonosov},
     title = {$L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small {Mach} numbers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--34},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a1/}
}
TY  - JOUR
AU  - A. A. Zlotnik
AU  - T. A. Lomonosov
TI  - $L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 16
EP  - 34
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a1/
LA  - ru
ID  - MM_2021_33_5_a1
ER  - 
%0 Journal Article
%A A. A. Zlotnik
%A T. A. Lomonosov
%T $L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers
%J Matematičeskoe modelirovanie
%D 2021
%P 16-34
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a1/
%G ru
%F MM_2021_33_5_a1
A. A. Zlotnik; T. A. Lomonosov. $L^2$-dissipativity of finite-difference schemes for $\mathrm{1D}$ regularized barotropic gas dynamics equations at small Mach numbers. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 16-34. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a1/

[1] B. N. Chetverushkin, Kinetic schemes and quasi-gas dynamic system of equations, CIMNE, Barcelona, 2008

[2] T.G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009 | MR | Zbl

[3] Yu. V. Sheretov, Dinamika sploshnykh sred pri prostanstvenno-vremennom osrednenii, Reguliarnaia i khaoticheskaia dinamika, M.–Izhevsk, 2009

[4] A. A. Zlotnik, B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them”, Comput. Math. Math. Phys., 48:3 (2008), 420–446 | DOI | MR | Zbl

[5] A.A. Zlotnik, “Parabolicity of a quasihydrodynamic system of equations and the stability of its small perturbations”, Math. Notes, 83:5 (2008), 610–623 | DOI | MR | Zbl

[6] O. V. Bulatov, T. G. Elizarova, “Regularized shallow water equations and an efficient method for numerical simulation of shallow water flows”, Comput. Math. Math. Phys., 51:1 (2011), 160–173 | DOI | MR | Zbl

[7] T. G. Elizarova, A. A. Zlotnik, M. A. Istomina, “Hydrodynamical aspects of the formation of spiral-vortical structures in rotating gaseous disks”, Astronomy Rep., 62 (2018), 9–18 | DOI

[8] V. Balashov, A. Zlotnik, E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface”, Russ. J. Numer. Anal. Math. Model., 32:6 (2017), 347–358 | DOI | MR | Zbl

[9] V. Balashov, A. Zlotnik, “An energy dissipative spatial discretization for the regularized compressible Navier-Stokes-Cahn-Hilliard system of equations”, Math. Model. Anal., 25:1 (2020), 110–129 | DOI | MR

[10] V. Balashov, A. Zlotnik, “An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier-Stokes-Cahn-Hilliard equations”, J. Comput. Dynamics, 7:2 (2020), 291–312 | DOI | MR | Zbl

[11] S. K. Godunov, V. S. Riabenkii, Difference Schemes, North Holland, Amsterdam, 1986 | MR

[12] A. A. Zlotnik, “Prostranstvennaya diskretizatsiia odnomernoi barotropnoi kvazigazodinamicheskoi sistemy uravnenii i uravnenie energeticheskogo balansa”, Matem. Modelirovanie, 24:10 (2012), 51–64 | MR | Zbl

[13] A. A. Sukhomozgii, Yu. V. Sheretov, “Analiz ustoichivosti odnoi raznostnoi skhemy resheniia uravnenii Sen-Venana v teorii melkoi vody”, Prilozh. funkts. analiza v teorii priblizhenii, TvGU, Tver, 2013, 48–60

[14] A. Zlotnik, T. Lomonosov, “On conditions for weak conservativeness of regularized explicit finite-difference schemes for 1D barotropic gas dynamics equations”, Differential and Difference Equations with Applications, Springer Proc. in Math. and Stat., 230, 2018, 635–647 | MR | Zbl

[15] A. A. Zlotnik, T. A. Lomonosov, “Conditions for $L^2$-dissipativity of linearized explicit difference schemes with regularization for 1D barotropic gas dynamics equations”, Comput. Math. Math. Phys., 59:3 (2019), 452–464 | DOI | MR | Zbl

[16] A. A. Zlotnik, T. A., “Lomonosov on $L^2$-dissipativity of a linearized explicit finite-difference scheme with quasi-gas dynamic regularization for the barotropic gas dynamics system of equations”, Doklady Mathematics, 101:3 (2020), 198–204 | DOI | MR