Comparison of two methods of paralleling computations in solving the integro-differential radiation transport equation
Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of paralleling computations in solving the integro-differential radiation transport equation in turbid media. The two-steps iterative algorithm of solving a grid equations system is under consideration. At the first step the simple iteration method is carried out. At the second step an accelerating correction is added to grid values obtained at the first step. Equations for an accelerating correction are solved by the Krylov subspace method. Two methods of paralleling two-steps iterative algorithm are being compared. In the first method calculations at a simple iteration are localized in each subregion (BJ - Block Jacobi method). At the second method through calculation over whole region is fulfiled (BS — Block Seidel method). Both the methods are included into the code RADUGA T developed for solving the transport equation on unstructured grids. Both methods effectiveness are studied and compared on the light-water reactor model.
Mots-clés : transport equation
Keywords: parallel computation, through calculation, unstructured grids.
@article{MM_2021_33_5_a0,
     author = {O. V. Nikolaeva},
     title = {Comparison of two methods of paralleling computations in solving the integro-differential radiation transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_5_a0/}
}
TY  - JOUR
AU  - O. V. Nikolaeva
TI  - Comparison of two methods of paralleling computations in solving the integro-differential radiation transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 15
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_5_a0/
LA  - ru
ID  - MM_2021_33_5_a0
ER  - 
%0 Journal Article
%A O. V. Nikolaeva
%T Comparison of two methods of paralleling computations in solving the integro-differential radiation transport equation
%J Matematičeskoe modelirovanie
%D 2021
%P 3-15
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_5_a0/
%G ru
%F MM_2021_33_5_a0
O. V. Nikolaeva. Comparison of two methods of paralleling computations in solving the integro-differential radiation transport equation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 5, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2021_33_5_a0/

[1] M. P. Adams, M. L. Adams, W. D. Hawkins, T. Smith, L. Rauchwerger, N. M. Amato, T. S. Bailey, R. D. Falgout, “Provably optimal parallel transport sweeps on regular grids”, Int. Conf. on Math. and Comput. Methods Applied to Nuclear Sci. Eng. (M 2013) (Sun Valley, Idaho, USA, May 5–9, 2013), ANS, LaGrange Park, IL, 2013 https://experts.illinois.edu/en/publications/provably-optimal-parallel-transport-sweeps-on-regular-grids

[2] Sh. D. Pautz, T. S. Bailey, “Parallel deterministic transport sweeps of structured and unstructured meshes with overloaded mesh decompositions”, Nuclear Science and Engineering, 185 (2017), 70–77 | DOI

[3] T. Deakin, S. McIntosh-Smith, W. Gaudin, “Many-core acceleration of a discrete ordinates. Transport mini-app at extreme scale”, 31 International Conf. on High Performance Computing (Frankfurt, Germany, 2016), 429–448 | DOI

[4] R. S. Baker, “An SN Algorithm for modern architectures”, Nuclear Science and Engineering, 185 (2017), 107–116 | DOI

[5] J. J. Jarrell, T. M. Evans, A. T. Godfrey, “Full core reactor analysis: Running Denovo on Jaguar”, Nuclear Science and Engineering, 175:3 (2013), 283–291 | DOI

[6] D. F. Baydin. E.N. Aristova, “3D hexagonal parallel code QUDIFF for calculating a fast reactor's critical parameters”, Mathematical Models and Computer Simulations, 8:4 (2016), 446–452 | DOI | MR

[7] A. M. Voloschenko, Adaptyvnie polozhitelnie approksimatzii i soglasovannaia KP1 skhema uskoreniia iteratzii dlia uravneniia perenosa v zadachakh radiatzionnoi zashchity, diss. na soiskanie ychenoi stepeni doktora fitz.-mat. nauk, IPM im. M.V. Keldysha RAN, M., 2015, 284 pp.

[8] B. Turskin, “Parallel Sn sweeps on adapted meshes”, Joint Int. Conf. on Math. and Comput. (M), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method (Nashville, Tennessee, USA, April 19–23, 2015), ANS, LaGrange Park, IL, 2015

[9] Sh. D. Pautz, “An algorithm for parallel Sn sweeps on unstructured meshes”, Nuclear Science and Engineering, 140:2 (2002), 111–136 | DOI

[10] S. J. Plimpton, B. Hendrickson, Sh. P. Burns, W. III McLendon, L. Rauchwerger, “Parallel Sn sweeps on unstructured grids: algorithms for prioritization, grid partitioning, and cycle detection”, Nuclear Science and Eng., 150 (2005), 267–283 | DOI

[11] G. Colomer, R. Borrell, F. X. Trias, I. Rodriguez, “Parallel algorithms for Sn transport sweeps on unstructured meshes”, J. of Comput. Phys., 232 (2013), 118–135 | DOI

[12] J. Yan, G. M. Tan, N. H. Sun, “Optimizing parallel Sn sweeps on unstructured grids for multicore clusters”, Journal of Computer Science and Technology, 28:4 (2013), 657–670 | DOI

[13] R. Lenain, E. Masiello, F. Damian, R. Sanchez, “Domain decomposition method for 2D and 3D transport calculations using Hybrid MPI/OPENMP Parallelelizm”, Joint Int. Conf. on Math. and Comput. (M), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method (Nashville, Tennessee, USA, April 19–23, 2015), ANS, LaGrange Park, IL, 2015 https://hal-cea.archives-ouvertes.fr/cea-02506817/document

[14] R. Yessayan, Y. Azmy, S. Schunert, “Development of A parallel performance model for the THOR neutral particle transport code”, International Conference on Mathematics Computational Methods Applied to Nuclear Science Engineering (Jeju, Korea, April 16–20, 2017), ANS, LaGrange Park, IL, 2017 https://www.osti.gov/servlets/purl/1369430

[15] O. V. Nikolaeva, “Metody rasparallelivaniia vychislenii pri reshenii uravneniia perenosa neitronov na nestrukturirovannykh setkakh v programme RADUGA T”, Voprosy Atomnoi Nauki I Tekhniki, ser. Matem. modelirovanie fisicheskikh protsessov, 2021, no. 1 | Zbl

[16] N. I. Kokonkov, O. V. Nikolaeva, “An iterative KP1 method for solving the transport equation in 3D domains on unstructured grids”, Computational Mathematics and Mathematical Physics, 55:10 (2015), 1698–1712 | DOI | DOI | MR | Zbl

[17] T. Takeda, H. Ikeda, “3-D neutron transport benchmarks”, Journal of Nuclear Science and Technology, 28:7 (1991), 656–669 | DOI