Model representations of heat stroke of a massive body with an internal cavity
Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 116-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses mathematical models of the theory of heat shock in terms of dynamic and quasi-static thermoelasticity and their applications to specific cases with intense heating of a solid boundary. In particular, the thermal reaction to heating of a massive body with an inner cylindrical cavity has been studied — an important result for many applications. The presence of the curvature of the boundary surface dictates the formulation of a dynamic problem in displacements under conditions of a radial heat flux. Numerical experiments are performed and the wave character of thermal stresses is described, as well as the corresponding quasi-static values. The role of inertial effects inherent in mathematical models of the theory of thermal shock is established.
Keywords: heatstroke, mathematical models, thermal stresses.
@article{MM_2021_33_4_a6,
     author = {E. M. Kartashov and E. V. Nenakhov},
     title = {Model representations of heat stroke of a massive body with an internal cavity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {116--132},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/}
}
TY  - JOUR
AU  - E. M. Kartashov
AU  - E. V. Nenakhov
TI  - Model representations of heat stroke of a massive body with an internal cavity
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 116
EP  - 132
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/
LA  - ru
ID  - MM_2021_33_4_a6
ER  - 
%0 Journal Article
%A E. M. Kartashov
%A E. V. Nenakhov
%T Model representations of heat stroke of a massive body with an internal cavity
%J Matematičeskoe modelirovanie
%D 2021
%P 116-132
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/
%G ru
%F MM_2021_33_4_a6
E. M. Kartashov; E. V. Nenakhov. Model representations of heat stroke of a massive body with an internal cavity. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 116-132. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/

[1] E. M. Kartashov, V. A. Kudinov, Analytical theory of heat conduction and thermoelasticity, URSS, M., 2012, 970 pp.

[2] G. Parkus, Neustanovivshiesia temperaturnye napriazheniia, Fizmatlit, M., 1963, 251 pp.

[3] E. M. Kartashov, L. M. Ozherelkova, “Novye modelnye predstavleniia v probleme teplovogo udara”, Matematicheskoe modelirovanie, 14:2 (2002), 95–108 | MR | Zbl

[4] Iu. M. Koliano, “Obobshchennaia termomekhanika (obzor)”, Matematicheskie metody i fiziko-mekhanicheskie polia, 2, Naukova dumka, Kiev, 1975, 37–42

[5] E. M. Kartashov, E. V. Nenakhov, “Dinamicheskaia termouprugost' v probleme teplovogo udara na osnove obobshchennogo uravneniia energii”, Teplovye protsessy v tekhnike, 10:7-8 (2018), 334–344

[6] Eduard M. Kartashov, “Originals of operating images for generalized problems of unsteady heat conductivity”, Tonkie Khimicheskie Tekhnologii, 14:4 (2019), 77–86

[7] Iu. M. Koliano, Metody teploprovodnosti i termouprugosti neodnorodnogo tela, Naukova dumka, Kiev, 1992, 280 pp.

[8] V. L. Kolpashchikov, S. Iu. Ianovskiy, “Uravneniia dinamicheskoy termouprugosti dlia sred s teplovoy pamiat'iu”, Inzh. fiz. zhurn., 47:4 (1984), 670–675

[9] V. S. Zarubin, G. N. Kuvyrkin, Matem. modeli termomekhaniki, Fizmatlit, M., 2002, 168 pp.

[10] E. M. Kartashov, G. M. Bartenev, “Dinamicheskie effekty v tverdykh telakh v usloviiakh vzaimodeystviia s intensivnymi potokami energii”, Itogi nauki i tekhniki, seriia KHimiia i tekhnologiia vysokomolekuliarnykh soedineniy, 25, VINITI, M., 1988, 3–88

[11] E. M. Kartashov, V. Z. Parton, “Dinamicheskaia termouprugost' i problemy termicheskogo udara”, Itogi nauki i tekhniki, seriia Mekhanika deformiruemogo tverdogo tela, 22, VINITI, M., 1991, 55–127

[12] E. M. Kartashov, V. A. Kudinov, Matematicheskie modeli teploprovodnosti i termouprugosti, Izd-vo MIREA, M., 2018, 1200 pp.

[13] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, L., 1948, 386 pp. | MR

[14] A. V. Attetkov, N. S. Beliakov, I. K. Volkov, “Vliianie podvizhnosti granitsy na temperaturnoe pole tverdogo tela s tsilindricheskim kanalom v nestatsionarnykh usloviiakh teploobmena s vneshney sredoy”, Vestnik MGTU im. N.E. Baumana, seriia «Mashinostroenie», 2006, no. 1, 31–40

[15] E. M. Kartashov, Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 540 pp.