Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_4_a6, author = {E. M. Kartashov and E. V. Nenakhov}, title = {Model representations of heat stroke of a massive body with an internal cavity}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {116--132}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/} }
TY - JOUR AU - E. M. Kartashov AU - E. V. Nenakhov TI - Model representations of heat stroke of a massive body with an internal cavity JO - Matematičeskoe modelirovanie PY - 2021 SP - 116 EP - 132 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/ LA - ru ID - MM_2021_33_4_a6 ER -
E. M. Kartashov; E. V. Nenakhov. Model representations of heat stroke of a massive body with an internal cavity. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 116-132. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a6/
[1] E. M. Kartashov, V. A. Kudinov, Analytical theory of heat conduction and thermoelasticity, URSS, M., 2012, 970 pp.
[2] G. Parkus, Neustanovivshiesia temperaturnye napriazheniia, Fizmatlit, M., 1963, 251 pp.
[3] E. M. Kartashov, L. M. Ozherelkova, “Novye modelnye predstavleniia v probleme teplovogo udara”, Matematicheskoe modelirovanie, 14:2 (2002), 95–108 | MR | Zbl
[4] Iu. M. Koliano, “Obobshchennaia termomekhanika (obzor)”, Matematicheskie metody i fiziko-mekhanicheskie polia, 2, Naukova dumka, Kiev, 1975, 37–42
[5] E. M. Kartashov, E. V. Nenakhov, “Dinamicheskaia termouprugost' v probleme teplovogo udara na osnove obobshchennogo uravneniia energii”, Teplovye protsessy v tekhnike, 10:7-8 (2018), 334–344
[6] Eduard M. Kartashov, “Originals of operating images for generalized problems of unsteady heat conductivity”, Tonkie Khimicheskie Tekhnologii, 14:4 (2019), 77–86
[7] Iu. M. Koliano, Metody teploprovodnosti i termouprugosti neodnorodnogo tela, Naukova dumka, Kiev, 1992, 280 pp.
[8] V. L. Kolpashchikov, S. Iu. Ianovskiy, “Uravneniia dinamicheskoy termouprugosti dlia sred s teplovoy pamiat'iu”, Inzh. fiz. zhurn., 47:4 (1984), 670–675
[9] V. S. Zarubin, G. N. Kuvyrkin, Matem. modeli termomekhaniki, Fizmatlit, M., 2002, 168 pp.
[10] E. M. Kartashov, G. M. Bartenev, “Dinamicheskie effekty v tverdykh telakh v usloviiakh vzaimodeystviia s intensivnymi potokami energii”, Itogi nauki i tekhniki, seriia KHimiia i tekhnologiia vysokomolekuliarnykh soedineniy, 25, VINITI, M., 1988, 3–88
[11] E. M. Kartashov, V. Z. Parton, “Dinamicheskaia termouprugost' i problemy termicheskogo udara”, Itogi nauki i tekhniki, seriia Mekhanika deformiruemogo tverdogo tela, 22, VINITI, M., 1991, 55–127
[12] E. M. Kartashov, V. A. Kudinov, Matematicheskie modeli teploprovodnosti i termouprugosti, Izd-vo MIREA, M., 2018, 1200 pp.
[13] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, L., 1948, 386 pp. | MR
[14] A. V. Attetkov, N. S. Beliakov, I. K. Volkov, “Vliianie podvizhnosti granitsy na temperaturnoe pole tverdogo tela s tsilindricheskim kanalom v nestatsionarnykh usloviiakh teploobmena s vneshney sredoy”, Vestnik MGTU im. N.E. Baumana, seriia «Mashinostroenie», 2006, no. 1, 31–40
[15] E. M. Kartashov, Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 540 pp.