Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials
Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 79-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of contact interaction of elements of the electromagnetic accelerator barrel is solved. Two-dimensional elastic approximation is used. Design area is one fourth of the cross section, area includes rail, insulator and overwrap. To solve the problem, a twolevel Schwartz additive method is used, using which the problem in the entire domain is reduced to solving a number of local contact problems in the entered sub- domains. The results of 3 calculations are presented: the first calculation used realistic orthotropic properties of materials, the other two calculations used isotropic approximations (for minimum and maximum values of Young's modules). Comparative analysis of stressstrain state of accelerator barrel for each case was carried out.
Mots-clés : domain decomposition method
Keywords: two-level Schwarz additive method, contact interaction of elastic bodies, electromagnetic accelerator.
@article{MM_2021_33_4_a4,
     author = {M. P. Galanin and A. S. Rodin},
     title = {Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--94},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/}
}
TY  - JOUR
AU  - M. P. Galanin
AU  - A. S. Rodin
TI  - Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 79
EP  - 94
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/
LA  - ru
ID  - MM_2021_33_4_a4
ER  - 
%0 Journal Article
%A M. P. Galanin
%A A. S. Rodin
%T Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials
%J Matematičeskoe modelirovanie
%D 2021
%P 79-94
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/
%G ru
%F MM_2021_33_4_a4
M. P. Galanin; A. S. Rodin. Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 79-94. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/

[1] V. V. Lukin, A. V. Plekhanov, A. S. Rodin, K. D. Golovkin, E. S. Yushkov, “Durability and Stiffness Estimation for the Composite Overwrap Electromagnetic Rail Launcher Barrel”, IEEE Transactions on Plasma Science, 46:4 (2018), 967–971 | DOI

[2] A. I. Lobanov, I. B. Petrov, “Chislennoe reshenie sovmestnoi zadachi o vozdeistvii szhatoi plazmy na elektrody relsotrona”, Matematicheskoe modelirovanie, 5:10 (1993), 48–56 | Zbl

[3] M. P. Galanin, A. S. Rodin, “Modelirovanie kontaktnogo vzaimodeistviia elementov elektromagnitnogo uskoritelia s pomoshiu metoda dekompozitsii oblasti”, Preprinty IPM im. M.V. Keldysha, 2020, 082, 20 pp.

[4] V. S. Zarubin, G. N. Kuvyrkin, Matematicheskie modely mechaniki i elektrodinamiki sploshnoi sredy, Izdatelstvo MGTU im. N.E. Baumana, M., 2008, 512 pp.

[5] P. Wriggers, Computational Contact Mechanics, Springer-Verlag, Berlin-Heidelberg, 2006, 520 pp. | Zbl

[6] C. Eck, B. Wohlmuth, “Convergence of a contact-Neumann iteration for the solution of two-body contact problems”, Mathematical models methods application science, 13 (2003), 1103–1118 | DOI | MR | Zbl

[7] A. Toselli, O. Widlund, Domain Decomposition methods — Algorithms and Theory, Springer-Verlag, Berlin–Heidelberg, 2005, 450 pp. | MR | Zbl

[8] M. P. Galanin, A. S. Rodin, “Primenenie metoda dekompozitsii oblasti dlia resheniia zadachi kontaktnogo vzaimodeistviia osesimmetrichnykh tel”, Preprinty IPM im. M.V. Keldysha, 2020, 041, 31 pp.

[9] M. Kojic, K. J. Bathe, Inelastic Analysis of Solids and structures, Springer-Verlag, New-York, 2005, 414 pp. | MR