Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_4_a4, author = {M. P. Galanin and A. S. Rodin}, title = {Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--94}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/} }
TY - JOUR AU - M. P. Galanin AU - A. S. Rodin TI - Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials JO - Matematičeskoe modelirovanie PY - 2021 SP - 79 EP - 94 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/ LA - ru ID - MM_2021_33_4_a4 ER -
%0 Journal Article %A M. P. Galanin %A A. S. Rodin %T Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials %J Matematičeskoe modelirovanie %D 2021 %P 79-94 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/ %G ru %F MM_2021_33_4_a4
M. P. Galanin; A. S. Rodin. Simulation of contact interaction of electromagnetic accelerator elements taking into account orthotropic properties of materials. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 79-94. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a4/
[1] V. V. Lukin, A. V. Plekhanov, A. S. Rodin, K. D. Golovkin, E. S. Yushkov, “Durability and Stiffness Estimation for the Composite Overwrap Electromagnetic Rail Launcher Barrel”, IEEE Transactions on Plasma Science, 46:4 (2018), 967–971 | DOI
[2] A. I. Lobanov, I. B. Petrov, “Chislennoe reshenie sovmestnoi zadachi o vozdeistvii szhatoi plazmy na elektrody relsotrona”, Matematicheskoe modelirovanie, 5:10 (1993), 48–56 | Zbl
[3] M. P. Galanin, A. S. Rodin, “Modelirovanie kontaktnogo vzaimodeistviia elementov elektromagnitnogo uskoritelia s pomoshiu metoda dekompozitsii oblasti”, Preprinty IPM im. M.V. Keldysha, 2020, 082, 20 pp.
[4] V. S. Zarubin, G. N. Kuvyrkin, Matematicheskie modely mechaniki i elektrodinamiki sploshnoi sredy, Izdatelstvo MGTU im. N.E. Baumana, M., 2008, 512 pp.
[5] P. Wriggers, Computational Contact Mechanics, Springer-Verlag, Berlin-Heidelberg, 2006, 520 pp. | Zbl
[6] C. Eck, B. Wohlmuth, “Convergence of a contact-Neumann iteration for the solution of two-body contact problems”, Mathematical models methods application science, 13 (2003), 1103–1118 | DOI | MR | Zbl
[7] A. Toselli, O. Widlund, Domain Decomposition methods — Algorithms and Theory, Springer-Verlag, Berlin–Heidelberg, 2005, 450 pp. | MR | Zbl
[8] M. P. Galanin, A. S. Rodin, “Primenenie metoda dekompozitsii oblasti dlia resheniia zadachi kontaktnogo vzaimodeistviia osesimmetrichnykh tel”, Preprinty IPM im. M.V. Keldysha, 2020, 041, 31 pp.
[9] M. Kojic, K. J. Bathe, Inelastic Analysis of Solids and structures, Springer-Verlag, New-York, 2005, 414 pp. | MR