Compact and monotone difference schemes for parabolic equations
Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 60-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider compact and monotone difference schemes of the fourth order of approximation for linear, semilinear, and quasilinear equations of parabolic type. For the Fisher equation, the monotonicity, stability and convergence of the proposed methods are proved in the uniform norm $L_\infty$ or $C$. The results obtained are generalized to quasilinear parabolic equations with nonlinearities such as a porous medium. The work an abstract level defines the monotonicity of a difference scheme in the nonlinear case. The performed computational experiment illustrates the effectiveness of the considered methods. A way of determining the order of convergence of the proposed methods based on the Runge method in the case of the presence of several variables and different orders in different variables is indicated in the article.
Keywords: monotone difference schemes, maximum principle, compact difference schemes, two-side estimates.
@article{MM_2021_33_4_a3,
     author = {P. P. Matus and B. D. Utebaev},
     title = {Compact and monotone difference schemes for parabolic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {60--78},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a3/}
}
TY  - JOUR
AU  - P. P. Matus
AU  - B. D. Utebaev
TI  - Compact and monotone difference schemes for parabolic equations
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 60
EP  - 78
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a3/
LA  - ru
ID  - MM_2021_33_4_a3
ER  - 
%0 Journal Article
%A P. P. Matus
%A B. D. Utebaev
%T Compact and monotone difference schemes for parabolic equations
%J Matematičeskoe modelirovanie
%D 2021
%P 60-78
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a3/
%G ru
%F MM_2021_33_4_a3
P. P. Matus; B. D. Utebaev. Compact and monotone difference schemes for parabolic equations. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 60-78. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a3/

[1] S. Lemeshevsky, P. Matus, D. Poliakov, Exact finite-difference schemes, De Gruyter, 2016 | MR | Zbl

[2] V. I. Paasonen, “Kompaktnye skhemy dlia sistem uravnenii vtorogo poriadka s konvektivnymi parametrami”, Vychislitelnye tekhnologii, 3:1 (1998), 55–66 | MR | Zbl

[3] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp.

[4] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001, 761 pp. | MR | MR | Zbl

[5] A. A. Samarskii, “Schemes of high-order accuracy for the multi-dimensional heat conduction equation”, Comp. Mathematics and Mathematical Physics, 3:5 (1963), 1107–1146 | DOI | MR | Zbl

[6] V. I. Paasonen, “Obobshchenie metodov vysokoi tochnosti dlia nelineinykh uravnenii 2-go poriadka v ortogonalnykh sistemakh koordinat”, Chislennye metody mekhaniki sploshnoi sredy, 8:2 (1977), 94–99

[7] B. V. Rogov, M. N. Mikhailovskaya, “On the convergence of compact difference schemes”, Mathematical Models and Computer Simulations, 1:1 (2009), 91–104 | DOI | MR | Zbl

[8] M. N. Mikhailovskaia, Monotonnye bikompaktnye skhemy dlia uravnenii giperbolicheskogo i parabolicheskogo tipov, avtoreferat diss. k.f.-m.n., MFTI, M., 2011

[9] I. V. Petukhov, “Chislennyi raschet dvumernykh techenii v pogranichnom sloe”, Jurnal vychislitelnoi matematiki i matematicheskoi fiziki, 4, dopolnenie k No 4 (1964), 304–325 | Zbl

[10] F. J. Gaspar, F. J. Lisbona, P. Matus, V. T.K. Tuyen, “Monotone finite difference schemes for quasilinear parabolic problems with mixed boundary conditions”, Computational Methods in Applied Mathematics, 16:2 (2016), 231–243 | DOI | MR | Zbl

[11] P. Matus, L. M. Hieu, L. G. Vulkov, “Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations”, Journal of Computational and Applied Mathematics, 310 (2017), 186–199 | DOI | MR | Zbl

[12] P. N. Vabishchevich, A. A. Samarskii, “Monotone finite-difference schemes on triangular grids for convection-diffusion problems”, Comp. Math. Math. Physics, 42:9 (2002), 1317–1330 | MR | Zbl

[13] K. O. Friedrichs, D. H. Hyers, “Symmetric hyperbolic linear differential equations”, Communications on Pure and Applied Mathematics, 7:2 (1954), 345–392 | DOI | MR | Zbl

[14] P. Matus, S. V. Lemeshevsky, “Stability and monotonicity of difference schemes for non-linear scalar conservation laws and multidimensional quasi-linear parabolic equations”, Computational Methods in Applied Mathematics, 9:3 (2009), 253–280 | DOI | MR | Zbl

[15] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comp. Math. Math. Physics, 46:9 (2006), 1560–1588 | DOI | MR

[16] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskikh modelei, Izd-vo MGTU im. N.E. Baumana, M., 2010, 591 pp.

[17] E. Godlewski, P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Springer, New York, 1996 | MR | Zbl

[18] P. P. Matus, “Stability with respect to the initial data and monotonicity of an implicit difference scheme for a homogeneous porous medium equation with a quadratic nonlinearity”, Differential Equations, 46:7 (2010), 1019–1029 | DOI | MR | Zbl

[19] V. V. Ostapenko, “On the strong monotonicity of nonlinear difference schemes”, Computational Mathematics and Mathematical Physics, 38:7 (1998), 1119–1133 | MR | Zbl

[20] P. Matus, “The maximum principle and some of its applications”, Computational Methods in Applied Mathematics, 2:1 (2002), 50–91 | DOI | MR | Zbl

[21] P. P. Matus, S. V. Lemeshevsky, “Coefficient stability of the solution of a difference scheme approximating a mixed problem for a semilinear parabolic equation”, Differential Equations, 54:7 (2018), 929–937 | DOI | MR | Zbl

[22] A. A. Samarskii, P. P. Matus, P. N. Vabishchevich, Difference schemes with operator factors, Kluwer, Dordrecht, 2002, 384 pp. | MR | Zbl

[23] P. Matus, “Stability of difference schemes for nonlinear time-dependent problems”, Computational Methods in Applied Mathematics, 3:2 (2003), 313–329 | DOI | MR | Zbl

[24] W. Liao, J. Zhu, “A fourth-order compact finite difference scheme for solving unsteady convection-diffusion equations”, Computational Simulations and Applications, 96 (2011), 81 | MR

[25] R. A. Fisher, “The wave of advance of advantageous genes”, Annals of Eugenics, 7:4 (1937), 355–369 | DOI | Zbl

[26] A. N. Kolmogorov, I. G. Petrovskii, I. S. Piskunov, “Issledovanie uravneniia diffuzii, soedinennoi s vozrastaniem kolichestva veshchestva i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU, Sektsiia A, 1:6 (1937), 1–25 | Zbl