Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_4_a3, author = {P. P. Matus and B. D. Utebaev}, title = {Compact and monotone difference schemes for parabolic equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {60--78}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a3/} }
P. P. Matus; B. D. Utebaev. Compact and monotone difference schemes for parabolic equations. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 60-78. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a3/
[1] S. Lemeshevsky, P. Matus, D. Poliakov, Exact finite-difference schemes, De Gruyter, 2016 | MR | Zbl
[2] V. I. Paasonen, “Kompaktnye skhemy dlia sistem uravnenii vtorogo poriadka s konvektivnymi parametrami”, Vychislitelnye tekhnologii, 3:1 (1998), 55–66 | MR | Zbl
[3] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp.
[4] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, Inc., New York, 2001, 761 pp. | MR | MR | Zbl
[5] A. A. Samarskii, “Schemes of high-order accuracy for the multi-dimensional heat conduction equation”, Comp. Mathematics and Mathematical Physics, 3:5 (1963), 1107–1146 | DOI | MR | Zbl
[6] V. I. Paasonen, “Obobshchenie metodov vysokoi tochnosti dlia nelineinykh uravnenii 2-go poriadka v ortogonalnykh sistemakh koordinat”, Chislennye metody mekhaniki sploshnoi sredy, 8:2 (1977), 94–99
[7] B. V. Rogov, M. N. Mikhailovskaya, “On the convergence of compact difference schemes”, Mathematical Models and Computer Simulations, 1:1 (2009), 91–104 | DOI | MR | Zbl
[8] M. N. Mikhailovskaia, Monotonnye bikompaktnye skhemy dlia uravnenii giperbolicheskogo i parabolicheskogo tipov, avtoreferat diss. k.f.-m.n., MFTI, M., 2011
[9] I. V. Petukhov, “Chislennyi raschet dvumernykh techenii v pogranichnom sloe”, Jurnal vychislitelnoi matematiki i matematicheskoi fiziki, 4, dopolnenie k No 4 (1964), 304–325 | Zbl
[10] F. J. Gaspar, F. J. Lisbona, P. Matus, V. T.K. Tuyen, “Monotone finite difference schemes for quasilinear parabolic problems with mixed boundary conditions”, Computational Methods in Applied Mathematics, 16:2 (2016), 231–243 | DOI | MR | Zbl
[11] P. Matus, L. M. Hieu, L. G. Vulkov, “Analysis of second order difference schemes on non-uniform grids for quasilinear parabolic equations”, Journal of Computational and Applied Mathematics, 310 (2017), 186–199 | DOI | MR | Zbl
[12] P. N. Vabishchevich, A. A. Samarskii, “Monotone finite-difference schemes on triangular grids for convection-diffusion problems”, Comp. Math. Math. Physics, 42:9 (2002), 1317–1330 | MR | Zbl
[13] K. O. Friedrichs, D. H. Hyers, “Symmetric hyperbolic linear differential equations”, Communications on Pure and Applied Mathematics, 7:2 (1954), 345–392 | DOI | MR | Zbl
[14] P. Matus, S. V. Lemeshevsky, “Stability and monotonicity of difference schemes for non-linear scalar conservation laws and multidimensional quasi-linear parabolic equations”, Computational Methods in Applied Mathematics, 9:3 (2009), 253–280 | DOI | MR | Zbl
[15] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comp. Math. Math. Physics, 46:9 (2006), 1560–1588 | DOI | MR
[16] M. P. Galanin, E. B. Savenkov, Metody chislennogo analiza matematicheskikh modelei, Izd-vo MGTU im. N.E. Baumana, M., 2010, 591 pp.
[17] E. Godlewski, P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, Springer, New York, 1996 | MR | Zbl
[18] P. P. Matus, “Stability with respect to the initial data and monotonicity of an implicit difference scheme for a homogeneous porous medium equation with a quadratic nonlinearity”, Differential Equations, 46:7 (2010), 1019–1029 | DOI | MR | Zbl
[19] V. V. Ostapenko, “On the strong monotonicity of nonlinear difference schemes”, Computational Mathematics and Mathematical Physics, 38:7 (1998), 1119–1133 | MR | Zbl
[20] P. Matus, “The maximum principle and some of its applications”, Computational Methods in Applied Mathematics, 2:1 (2002), 50–91 | DOI | MR | Zbl
[21] P. P. Matus, S. V. Lemeshevsky, “Coefficient stability of the solution of a difference scheme approximating a mixed problem for a semilinear parabolic equation”, Differential Equations, 54:7 (2018), 929–937 | DOI | MR | Zbl
[22] A. A. Samarskii, P. P. Matus, P. N. Vabishchevich, Difference schemes with operator factors, Kluwer, Dordrecht, 2002, 384 pp. | MR | Zbl
[23] P. Matus, “Stability of difference schemes for nonlinear time-dependent problems”, Computational Methods in Applied Mathematics, 3:2 (2003), 313–329 | DOI | MR | Zbl
[24] W. Liao, J. Zhu, “A fourth-order compact finite difference scheme for solving unsteady convection-diffusion equations”, Computational Simulations and Applications, 96 (2011), 81 | MR
[25] R. A. Fisher, “The wave of advance of advantageous genes”, Annals of Eugenics, 7:4 (1937), 355–369 | DOI | Zbl
[26] A. N. Kolmogorov, I. G. Petrovskii, I. S. Piskunov, “Issledovanie uravneniia diffuzii, soedinennoi s vozrastaniem kolichestva veshchestva i ego primenenie k odnoi biologicheskoi probleme”, Byulleten MGU, Sektsiia A, 1:6 (1937), 1–25 | Zbl