Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_4_a2, author = {V. V. Ostapenko and N. A. Khandeeva}, title = {To justification of the integral convergence method for studying the finite-difference schemes accuracy}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {45--59}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a2/} }
TY - JOUR AU - V. V. Ostapenko AU - N. A. Khandeeva TI - To justification of the integral convergence method for studying the finite-difference schemes accuracy JO - Matematičeskoe modelirovanie PY - 2021 SP - 45 EP - 59 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a2/ LA - ru ID - MM_2021_33_4_a2 ER -
%0 Journal Article %A V. V. Ostapenko %A N. A. Khandeeva %T To justification of the integral convergence method for studying the finite-difference schemes accuracy %J Matematičeskoe modelirovanie %D 2021 %P 45-59 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a2/ %G ru %F MM_2021_33_4_a2
V. V. Ostapenko; N. A. Khandeeva. To justification of the integral convergence method for studying the finite-difference schemes accuracy. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 45-59. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a2/
[1] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR
[2] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[4] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309 | DOI | MR | Zbl
[5] X. Liu, E., “Tadmor Third order nonoscillatory central scheme for hyperbolic conservation laws”, Numer. Math., 79 (1998), 397–425 | DOI | MR | Zbl
[6] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126 (1996), 202–228 | DOI | MR | Zbl
[7] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[8] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comp. Phys., 228 (2009), 7426–7451 | DOI | MR | Zbl
[9] V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comp. Math. Math. Phys., 37:10 (1997), 1161–1172 | MR | Zbl
[10] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comp., 19:1 (1998), 813–828 | DOI | MR | Zbl
[11] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 | DOI | MR | Zbl
[12] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | MR | Zbl
[13] O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Models Comp. Simul., 6:2 (2014), 183–191 | DOI | MR | Zbl
[14] N. A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models Comp. Simul., 7:5 (2015), 467–474 | DOI | MR | Zbl
[15] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves”, Comp. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI | MR | Zbl
[16] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme calculating weak solutions with shocks”, Comp. Technologies, 23:2 (2018), 37–54
[17] V. V. Ostapenko, “The convergence on a shock wave of continuous calculation difference schemes which are invariant with respect to similarity transformations”, USSR Comp. Math. Math. Phys., 26:6 (1986), 39–50 | DOI | MR | Zbl
[18] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 430 pp.
[19] A. K. Henrick, T. D. Aslam, J. M. Powers, “Simulation of pulsating one-dimensional detonations with true fifth order accuracy”, J. Comp. Phys., 213:1 (2006), 311–329 | DOI | MR | Zbl
[20] V. V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Dokl. Akad. Nauk SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[21] V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. Math. Phys., 40:12 (2000), 1784–1800 | MR | Zbl
[22] V. V. Ostapenko, Hyperbolic systems of conservation laws and its application to the theory of shallow water, Second edition, NSU, Novosibirsk, 2014, 234 pp.
[23] V. V. Ostapenko, “Equivalent definitions of conservative finite-difference schemes”, USSR Comp. Math. Math. Phys., 29:4 (1989), 100–110 | DOI | MR | Zbl
[24] V. V. Ostapenko, “On the strong monotonicity of nonlinear difference schemes”, Comp. Math. Math. Phys., 38:7 (1998), 1119–1133 | MR | Zbl