Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_4_a1, author = {A. S. Bugaev and A. G. Tatashev and M. V. Yashina}, title = {Spectrum of a continuous closed symmetric chain with an arbitrary number of contours}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--44}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a1/} }
TY - JOUR AU - A. S. Bugaev AU - A. G. Tatashev AU - M. V. Yashina TI - Spectrum of a continuous closed symmetric chain with an arbitrary number of contours JO - Matematičeskoe modelirovanie PY - 2021 SP - 21 EP - 44 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a1/ LA - ru ID - MM_2021_33_4_a1 ER -
%0 Journal Article %A A. S. Bugaev %A A. G. Tatashev %A M. V. Yashina %T Spectrum of a continuous closed symmetric chain with an arbitrary number of contours %J Matematičeskoe modelirovanie %D 2021 %P 21-44 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a1/ %G ru %F MM_2021_33_4_a1
A. S. Bugaev; A. G. Tatashev; M. V. Yashina. Spectrum of a continuous closed symmetric chain with an arbitrary number of contours. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 21-44. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a1/
[1] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “On synergy of totally connected flows on chainmails”, Proc. of International Conference of CMMSE (24.06–27.06 2013), v. 3, 861–874
[2] A. S. Bugaev, A. P. Buslaev, V. V. Kozlov, A. G. Tatashev, M. V. Iashina, “Obobshchennaia transportno-logisticheskaia model kak klass dinamicheskikh sistem”, Matem. modelirovanie, 27:12 (2015), 65–87 | Zbl
[3] K. Nagel, M. Schreckenberg, “A cellular automaton model for freeway traffic”, J. Phys. I France, 2 (1992), 2221–2229 | DOI | MR
[4] M. L. Blank, “Exact analysis of dynamical systems arising in models of traffic flow”, Russian Mathematical Surveys, 55:3 (2000), 562–563 | DOI | MR | Zbl
[5] V. Belitsky, P. A. Ferrari, “Invariant Measures and Convergence Properties for Cellular Automation 184 and Related Processes”, J. Stat. Phys., 118:3/4 (2005), 589–523 | DOI | MR
[6] L. Gray, D. Griffeath, “The Ergodic Theory of Traffic Jams”, J. Stat. Phys., 105:3/4 (2001), 413–452 | DOI | MR | Zbl
[7] M. Kanai, K. Nishinary, T. Tokihiro, Exact Solution and Asymptotic Behavior of the Asymmetric Behavior of the Asymetric Simple Exclusion Process on a Ring, 18 May 2009, arXiv: 0905.2795v1 [cond-mat-stat-mech] | MR
[8] M. Blank, “Metric Properties of Discrete Time Exclusion Type Processes in Continuum”, J. Stat. Phys., 140:1 (2010), 170–197 | DOI | MR | Zbl
[9] M. V. Yashina, A. G. Tatashev, “Traffic model based on synchronous and asynchronous exclusion processes”, Mathematical Methods in the Applied Sciences, 43:14 (2020), 8136–8146 | DOI | MR | Zbl
[10] O. Biham, A. A. Middleton, D. Levine, “Self-organization and a dynamic transition in traffic-flow models”, Phys. Rev. A. The Americal Phys. Society, 46:10 (1992), R6124–R6127 | DOI
[11] R. M. D'Souza, “Coexisting phases and lattice dependence of a cellular automaton model for traffic flow”, Phys. Rev. E. The Americal Society, 71:6 (2005), 066112 | DOI
[12] O. Angel, A. E. Holroyd, J. B. Martin, “The jammed phase of the Biham-Middleton-Levine traffic model for traffic flow model”, Electronic Communication in Probability, 10 (2005), 167–178 | DOI | MR | Zbl
[13] T. Austin, I. Benjamini, For what number of cars must self organization occur in the Biham-Middleton-Levine traffic model from any possible starting configuration, 2006, arXiv: math/0607759 [math.CO]
[14] A. S. Bugaev, A. P. Buslaev, V. V. Kozlov, M. V. Yashina, “Distributed Problems of Monitoring and Modern Approaches to Traffic Modeling, p. 6”, 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011) (Washington, USA, 5–7.10.2011), 2011, 477–481 | DOI | MR
[15] V. V. Kozlov, A. P. Buslaev, A. G. Tatashev, “Monotonic walks on a necklace and a coloured dynamic vector”, International Journal of Computer Mathematics, 92:9 (2015), 1910–1920 | DOI | MR | Zbl
[16] A. S. Bugaev, A. P. Buslaev, V. V. Kozlov, A. G. Tatashev, M. V. Iashina, “Modelirovanie trafika: monotonnoe sluchainoe bluzhdanie po seti”, Matem. modelirovanie, 25:8 (2013), 3–21 | MR | Zbl
[17] A. P. Buslaev, A. G. Tatashev, M. V. Yashina, “Flows spectrum on closed trio of contours with uniform load”, European Journal of Pure and Applied Mathematics, 11:1 (2018), 260–283 | DOI | MR | Zbl
[18] A. P. Buslaev, M. Yu. Fomina, A. G. Tatashev, M. V. Yashina, “On discrete flow networks model spectra: statements, simulation, hypotheses”, Journal of Physics: Conference Series, 1053 (2018), 1–7 | DOI
[19] A. G. Tatashev, M. V. Yashina, “Spectrum of Elementary Cellular Automata and Closed Chains of Contours”, Machines, 7:2 (2019), 28 | DOI
[20] A. Buslaev, A. Tatashev, M. Yashina, “Flow spectrum of closed/open contours chain”, Comp. and Math. Methods, 2020, e1087 | DOI
[21] A. P. Buslaev, A. G. Tatashev, “Spectra of local cluster flows on open chain of contours”, European Journal of Pure and Applied Mathematics, 11:3 (2018), 628–641 | DOI | MR
[22] M. Yashina, A. Tatashev, “Discrete open Buslaev chain with heterogenous loading”, 2019 7th International Conf. on Control, Mechatronics and Automation (ICCMA) (TU Netherlands, 6–8 Nov. 2019) | DOI
[23] P. A. Myshkis, A. G. Tatashev, M. V. Iashina, “Klasternoe dvizhenie v dvukhkonturnoi sisteme s prioritetnym pravilom razresheniia konflikta”, Izvestiia RAN. Teoriia i sistemy upravleniia, 2020, no. 3, 3–13 | DOI | Zbl
[24] M. V. Yashina, A. G. Tatashev, “Spectral cycles and average velocity of clusters in discrete two-contours system with two nodes”, Mathematical Methods in the Applied Sciences, 43:7 (2020), 4303–4316 | DOI | MR | Zbl
[25] A. Tatashev, M. Yashina, “Self-organization of two-contours dynamical system with common node and cross movement”, WSEAS Transactions on Mathematics, 18:45 (2019), 373–378