Numerical investigation of two-phase hyperbolic models
Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the numerical study of a finite-volume scheme with an HLLEM flux for solving equations from the family of Baer-Nunziato models. Three versions of the model are considered, differing in the degree of ”nonequilibrium”. A brief description of the models and their differences is provided. To approximate the equations of nonequilibrium models with rigid right-hand sides, which describe the process of mechanical and thermodynamic relaxation, the method of splitting into physical processes is used. Spatial approximations are constructed using the 1st and 2nd order finite volume method (TVD). The HLLEM flux is used as a numerical flux, for which a simple algorithm for determining the method parameter that guarantees the physicality of the solution is proposed. A feature of the work is that all three considered models are applied to analyze virtually the same physical setting.
Keywords: Baer-Nunziato equations, Riemann problem.
Mots-clés : HLLEM flux
@article{MM_2021_33_4_a0,
     author = {B. A. Korneev and R. R. Tukhvatullina and E. B. Savenkov},
     title = {Numerical investigation of two-phase hyperbolic models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/}
}
TY  - JOUR
AU  - B. A. Korneev
AU  - R. R. Tukhvatullina
AU  - E. B. Savenkov
TI  - Numerical investigation of two-phase hyperbolic models
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 20
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/
LA  - ru
ID  - MM_2021_33_4_a0
ER  - 
%0 Journal Article
%A B. A. Korneev
%A R. R. Tukhvatullina
%A E. B. Savenkov
%T Numerical investigation of two-phase hyperbolic models
%J Matematičeskoe modelirovanie
%D 2021
%P 3-20
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/
%G ru
%F MM_2021_33_4_a0
B. A. Korneev; R. R. Tukhvatullina; E. B. Savenkov. Numerical investigation of two-phase hyperbolic models. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/

[1] M. Dumbser, D. S. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems”, Journal of Computational Physics, 304 (2016), 275–319 | DOI | MR | Zbl

[2] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International journal of multiphase flow, 12:6 (1986), 861–889 | DOI | MR | Zbl

[3] D. A. Drew, S. L. Passman, Theory of multicomponent fluids, Springer Science Business Media, 2006, 310 pp. | MR

[4] N. Favrie, S. L. Gavrilyuk, R. Saurel, “Solid-fluid diffuse interface model in cases of extreme deformations”, Journal of computational physics, 228:16 (2009), 6037–6077 | DOI | MR | Zbl

[5] A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, D. S. Stewart, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone”, Physics of Fluids, 9:12 (1997), 3885–3897 | DOI

[6] A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, D. S. Stewart, “Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations”, Physics of fluids, 13:10 (2001), 3002–3024 | DOI | MR

[7] L. V. Leur, Assessment of the Baer-Nunziato seven-equation model applied to steam-water transients calibration of the stiffened gas equation of state based on steam-water tables, Master thesis, Eindhoven, September 2015

[8] A. Murrone, H. Guillard, “A five equation reduced model for compressible two phase flow problems”, Journal of Computational Physics, 202:2 (2005), 664–698 | DOI | MR | Zbl

[9] S. A. Tokareva, E. F. Toro, “HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow”, Journal of Computational Physics, 229:10 (2010), 3573–3604 | DOI | MR | Zbl

[10] F. Fraysse, C. Redondo, G. Rubio, E. Valero, “Upwind methods for the Baer-Nunziato equations and higher-order reconstruction using artificial viscosity”, Journal of Computational Physics, 326 (2016), 805–827 | DOI | MR | Zbl

[11] I. Menshov, A. Serezhkin, “A generalized Rusanov method for the Baer-Nunziato equations with application to DDT processes in condensed porous explosives”, International Journal for Numerical Methods in Fluids, 86:5 (2018), 346–364 | DOI | MR

[12] R. Saurel, R. Abgrall, “A simple method for compressible multifluid flows”, SIAM Journal on Scientific Computing, 21:3 (1999), 1115–1145 | DOI | MR | Zbl

[13] D. Gidaspow, “Modeling of two phase flow”, International Heat Transfer Conference Digital Library, Begel House Inc., 1974

[14] L. Van Wijngaarden, “Some problems in the formulation of the equations for gas/liquid flows”, Physics of Fluids, 1977, 249–260 | MR | Zbl

[15] R. W. Lyczkowski, D. Gidaspow, C. W. Solbrig, E. D. Hughes, “Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations”, Nuclear Science and Engineering, 66:3 (1978), 378–396 | DOI

[16] G. Allaire, S. Clerc, S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids”, Journal of Computational Physics, 181:2 (2002), 577–616 | DOI | MR | Zbl

[17] R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, “Shock jump relations for multiphase mixtures with stiff mechanical relaxation”, Shock waves, 16:3 (2007), 209–232 | DOI | Zbl

[18] A. V. Rodionov, “Methods of increasing the accuracy in Godunov's scheme”, USSR Computational Mathematics and Mathematical Physics, 27:6 (1987), 164–169 | DOI | Zbl

[19] P. Le Floch, T. P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form”, Forum mathematicum, 5 (1993), 261–280 | DOI | MR | Zbl

[20] G. Dal Maso, P. G. Lefloch, F. Murat, “Definition and weak stability of nonconservative products”, Journal de mathématiques pures et appliquées, 74:6 (1995), 483–485 | MR

[21] M. J. Castro, P. G. LeFloch, M. L. Muñoz-Ruiz, C. Parés, “Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes”, Journal of Computational Physics, 227:17 (2008), 8107–8129 | DOI | MR | Zbl