Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_4_a0, author = {B. A. Korneev and R. R. Tukhvatullina and E. B. Savenkov}, title = {Numerical investigation of two-phase hyperbolic models}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--20}, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/} }
TY - JOUR AU - B. A. Korneev AU - R. R. Tukhvatullina AU - E. B. Savenkov TI - Numerical investigation of two-phase hyperbolic models JO - Matematičeskoe modelirovanie PY - 2021 SP - 3 EP - 20 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/ LA - ru ID - MM_2021_33_4_a0 ER -
B. A. Korneev; R. R. Tukhvatullina; E. B. Savenkov. Numerical investigation of two-phase hyperbolic models. Matematičeskoe modelirovanie, Tome 33 (2021) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2021_33_4_a0/
[1] M. Dumbser, D. S. Balsara, “A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems”, Journal of Computational Physics, 304 (2016), 275–319 | DOI | MR | Zbl
[2] M. R. Baer, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials”, International journal of multiphase flow, 12:6 (1986), 861–889 | DOI | MR | Zbl
[3] D. A. Drew, S. L. Passman, Theory of multicomponent fluids, Springer Science Business Media, 2006, 310 pp. | MR
[4] N. Favrie, S. L. Gavrilyuk, R. Saurel, “Solid-fluid diffuse interface model in cases of extreme deformations”, Journal of computational physics, 228:16 (2009), 6037–6077 | DOI | MR | Zbl
[5] A. K. Kapila, S. F. Son, J. B. Bdzil, R. Menikoff, D. S. Stewart, “Two-phase modeling of DDT: Structure of the velocity-relaxation zone”, Physics of Fluids, 9:12 (1997), 3885–3897 | DOI
[6] A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, D. S. Stewart, “Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations”, Physics of fluids, 13:10 (2001), 3002–3024 | DOI | MR
[7] L. V. Leur, Assessment of the Baer-Nunziato seven-equation model applied to steam-water transients calibration of the stiffened gas equation of state based on steam-water tables, Master thesis, Eindhoven, September 2015
[8] A. Murrone, H. Guillard, “A five equation reduced model for compressible two phase flow problems”, Journal of Computational Physics, 202:2 (2005), 664–698 | DOI | MR | Zbl
[9] S. A. Tokareva, E. F. Toro, “HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow”, Journal of Computational Physics, 229:10 (2010), 3573–3604 | DOI | MR | Zbl
[10] F. Fraysse, C. Redondo, G. Rubio, E. Valero, “Upwind methods for the Baer-Nunziato equations and higher-order reconstruction using artificial viscosity”, Journal of Computational Physics, 326 (2016), 805–827 | DOI | MR | Zbl
[11] I. Menshov, A. Serezhkin, “A generalized Rusanov method for the Baer-Nunziato equations with application to DDT processes in condensed porous explosives”, International Journal for Numerical Methods in Fluids, 86:5 (2018), 346–364 | DOI | MR
[12] R. Saurel, R. Abgrall, “A simple method for compressible multifluid flows”, SIAM Journal on Scientific Computing, 21:3 (1999), 1115–1145 | DOI | MR | Zbl
[13] D. Gidaspow, “Modeling of two phase flow”, International Heat Transfer Conference Digital Library, Begel House Inc., 1974
[14] L. Van Wijngaarden, “Some problems in the formulation of the equations for gas/liquid flows”, Physics of Fluids, 1977, 249–260 | MR | Zbl
[15] R. W. Lyczkowski, D. Gidaspow, C. W. Solbrig, E. D. Hughes, “Characteristics and stability analyses of transient one-dimensional two-phase flow equations and their finite difference approximations”, Nuclear Science and Engineering, 66:3 (1978), 378–396 | DOI
[16] G. Allaire, S. Clerc, S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids”, Journal of Computational Physics, 181:2 (2002), 577–616 | DOI | MR | Zbl
[17] R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, “Shock jump relations for multiphase mixtures with stiff mechanical relaxation”, Shock waves, 16:3 (2007), 209–232 | DOI | Zbl
[18] A. V. Rodionov, “Methods of increasing the accuracy in Godunov's scheme”, USSR Computational Mathematics and Mathematical Physics, 27:6 (1987), 164–169 | DOI | Zbl
[19] P. Le Floch, T. P. Liu, “Existence theory for nonlinear hyperbolic systems in nonconservative form”, Forum mathematicum, 5 (1993), 261–280 | DOI | MR | Zbl
[20] G. Dal Maso, P. G. Lefloch, F. Murat, “Definition and weak stability of nonconservative products”, Journal de mathématiques pures et appliquées, 74:6 (1995), 483–485 | MR
[21] M. J. Castro, P. G. LeFloch, M. L. Muñoz-Ruiz, C. Parés, “Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes”, Journal of Computational Physics, 227:17 (2008), 8107–8129 | DOI | MR | Zbl