On increasing the stability of the combined scheme of the discontinuous Galerkin method
Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 98-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special modification of the combined scheme of the discontinuous Galerkin method is proposed, which increases the stability of this scheme when calculating discontinuous solutions with shock waves. This modification is associated with the addition of an artificial viscosity of the fourth order of divergence to the basic scheme included in this combined scheme. Test calculations are presented. They demonstrate the advantages of the new combined scheme in comparison with the standard monotonized versions of the discontinuous Galerkin method.
Keywords: systems of conservation laws, combined schemes, discontinuous Galerkin method, artificial viscosity.
@article{MM_2021_33_3_a6,
     author = {M. E. Ladonkina and O. A. Nekliudova and V. V. Ostapenko and V. F. Tishkin},
     title = {On increasing the stability of the combined scheme of the discontinuous {Galerkin} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--108},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/}
}
TY  - JOUR
AU  - M. E. Ladonkina
AU  - O. A. Nekliudova
AU  - V. V. Ostapenko
AU  - V. F. Tishkin
TI  - On increasing the stability of the combined scheme of the discontinuous Galerkin method
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 98
EP  - 108
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/
LA  - ru
ID  - MM_2021_33_3_a6
ER  - 
%0 Journal Article
%A M. E. Ladonkina
%A O. A. Nekliudova
%A V. V. Ostapenko
%A V. F. Tishkin
%T On increasing the stability of the combined scheme of the discontinuous Galerkin method
%J Matematičeskoe modelirovanie
%D 2021
%P 98-108
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/
%G ru
%F MM_2021_33_3_a6
M. E. Ladonkina; O. A. Nekliudova; V. V. Ostapenko; V. F. Tishkin. On increasing the stability of the combined scheme of the discontinuous Galerkin method. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 98-108. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/

[1] S.K. Godunov, “A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics”, Sbornik: Mathematics, 47:8–9 (1959), 357–393

[2] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136

[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393

[4] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309

[5] H. Nessyahu, E. Tadmor, “Non-oscillatory Central Differencing for Hyperbolic Conservation Laws”, J. Comp. Phys., 87:2 (1990), 408–463

[6] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228

[7] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268

[8] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comp. Phys., 228 (2009), 7426–7451

[9] V.V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comp. Math. Math. Phys., 37:10 (1997), 1161–1172

[10] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comp., 19:1 (1998), 813–828

[11] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485

[12] V.V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. Math. Phys., 40:12 (2000), 1784–1800

[13] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI

[14] O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Models Comp. Simul., 6:2 (2014), 183–191 | DOI

[15] N.A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models Comp. Simul., 7:5 (2015), 467–474 | DOI

[16] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves”, Comp. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI

[17] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme calculating weak solutions with shocks”, Computational Technologies, 23:2 (2018), 37–54

[18] V. V. Ostapenko, “O konechno-raznostnoi approksimacii uslovii Hughonio na fronte udarnoi volni”, GVMiMF, 38:8 (1998), 1355–1367

[19] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Doklady Mathematics, 97:1 (2018), 77–81

[20] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Doklady Mathematics, 98:2 (2018), 506–510

[21] M. E. Ladonkina, O. A. Nekliudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Doklady Mathematics, 100:3 (2019), 519–523

[22] M. D. Bragin, B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves”, Dokl. Math., 101:3 (2020), 239–243

[23] B. L. Rozhdestvenskii, N. N. Yanenko, Systemi kvazilineinih uravnenii, Nauka, M., 1978

[24] V.V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Mathematics and Mathematical Physics, 1:2 (1962), 304–320

[25] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193