Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_3_a6, author = {M. E. Ladonkina and O. A. Nekliudova and V. V. Ostapenko and V. F. Tishkin}, title = {On increasing the stability of the combined scheme of the discontinuous {Galerkin} method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {98--108}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/} }
TY - JOUR AU - M. E. Ladonkina AU - O. A. Nekliudova AU - V. V. Ostapenko AU - V. F. Tishkin TI - On increasing the stability of the combined scheme of the discontinuous Galerkin method JO - Matematičeskoe modelirovanie PY - 2021 SP - 98 EP - 108 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/ LA - ru ID - MM_2021_33_3_a6 ER -
%0 Journal Article %A M. E. Ladonkina %A O. A. Nekliudova %A V. V. Ostapenko %A V. F. Tishkin %T On increasing the stability of the combined scheme of the discontinuous Galerkin method %J Matematičeskoe modelirovanie %D 2021 %P 98-108 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/ %G ru %F MM_2021_33_3_a6
M. E. Ladonkina; O. A. Nekliudova; V. V. Ostapenko; V. F. Tishkin. On increasing the stability of the combined scheme of the discontinuous Galerkin method. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 98-108. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a6/
[1] S.K. Godunov, “A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics”, Sbornik: Mathematics, 47:8–9 (1959), 357–393
[2] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136
[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393
[4] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys., 24:2 (1987), 279–309
[5] H. Nessyahu, E. Tadmor, “Non-oscillatory Central Differencing for Hyperbolic Conservation Laws”, J. Comp. Phys., 87:2 (1990), 408–463
[6] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comput. Phys., 126 (1996), 202–228
[7] B. Cockburn, “An Introduction to the Discontinuous Galerkin Method for Convection Dominated Problems”, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, 1697, 1998, 151–268
[8] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comp. Phys., 228 (2009), 7426–7451
[9] V.V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comp. Math. Math. Phys., 37:10 (1997), 1161–1172
[10] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comp., 19:1 (1998), 813–828
[11] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485
[12] V.V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. Math. Phys., 40:12 (2000), 1784–1800
[13] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI
[14] O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Models Comp. Simul., 6:2 (2014), 183–191 | DOI
[15] N.A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models Comp. Simul., 7:5 (2015), 467–474 | DOI
[16] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves”, Comp. Math. Math. Phys., 58:8 (2018), 1344–1353 | DOI
[17] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme calculating weak solutions with shocks”, Computational Technologies, 23:2 (2018), 37–54
[18] V. V. Ostapenko, “O konechno-raznostnoi approksimacii uslovii Hughonio na fronte udarnoi volni”, GVMiMF, 38:8 (1998), 1355–1367
[19] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Doklady Mathematics, 97:1 (2018), 77–81
[20] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Doklady Mathematics, 98:2 (2018), 506–510
[21] M. E. Ladonkina, O. A. Nekliudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Doklady Mathematics, 100:3 (2019), 519–523
[22] M. D. Bragin, B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves”, Dokl. Math., 101:3 (2020), 239–243
[23] B. L. Rozhdestvenskii, N. N. Yanenko, Systemi kvazilineinih uravnenii, Nauka, M., 1978
[24] V.V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Computational Mathematics and Mathematical Physics, 1:2 (1962), 304–320
[25] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193