Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_3_a5, author = {I. S. Nesterova and K. M. Gerke}, title = {Simulations of nanoscale gas flow with {Knudsen} diffusion and slip flow}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {85--97}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a5/} }
I. S. Nesterova; K. M. Gerke. Simulations of nanoscale gas flow with Knudsen diffusion and slip flow. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 85-97. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a5/
[1] R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, D. V. Korost, “Solution of the Stokes Equation in Three Dimensional Geometry by the Finite Difference Method”, Math. Models and Computer Simulations, 8:1 (2016), 63–72 | DOI | MR
[2] K. M. Gerke, R. V. Vasilyev, S. Khirevich, D. Collins, M. V. Karsanina, T. O. Sizonenko, D. V. Korost, S. Lamontagne, D. Mallants, “Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies”, Computers Geosciences, 114 (2018), 41–58 | DOI
[3] V. A. Balashov, “Direct simulation of moderately rarefied gas flows within core samples”, Math. Models and Computer Simulations, 11:3 (2019), 329–340 | DOI | MR
[4] F. Javadpour, “Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)”, Journal of Canadian Petroleum Technology, 48:08 (2009), 16–21 | DOI
[5] V. A. Balashov, E. B. Savenkov et al., “Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples”, Mathematical Models and Computer Simulations, 12:2 (2020), 110–124 | DOI | MR | Zbl
[6] K. Gerke, R. Vasilyev, D. Korost, M. Karsanina, N. Balushkina, R. Khamidullin, G. Kalmykov, D. Mallants, SPE Unconventional Res. Conf. and Exhibition, SPE 167058 Technical paper (11–13 Nov. 2013, Brisbane, Australia) | DOI
[7] K. M. Gerke, M. V. Karsanina, D. Mallants, “Universal stochastic multiscale image fusion: an example application for shale rock”, Scientific Reports, 5 (2015), 15880 | DOI
[8] M. V. Karsanina, K. M. Gerke, E. B. Skvortsova, A. L. Ivanov, D. Mallants, “Enhancing image resolution of soils by stochastic multiscale image fusion”, Geoderma, 314 (2018), 138–145 | DOI
[9] M. V. Karsanina i dr., “Modelirovanie struktury materialov, obladaiushchikh zhelaemymi svoistvami, s pomoshchiu korreliatsionnykh funktsii”, Matem. model., 27:4 (2015), 50–63 | Zbl
[10] K. M. Gerke, M. V. Karsanina, “Improving stochastic reconstructions by weighting correlation functions in an objective function”, EPL (Europhysics Lett.), 111:5 (2015), 56002 | DOI
[11] M. V. Karsanina, K. M. Gerke, “Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions”, Physical Review Lett., 121:26 (2018), 265501 | DOI
[12] K. M. Gerke, M. V. Karsanina, R. V. Vasilyev, D. Mallants, “Improving pattern reconstructtion using directional correlation functions”, EPL (Europhysics Letters), 106:6 (2014), 66002 | DOI
[13] K. M. Gerke, M. V. Karsanina, R. Katsman, “Calculation of tensorial flow properties on pore level: Exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions”, Physical Review E, 100:5 (2019), 053312 | DOI
[14] A. Mehmani, M. Prodanović, F. Javadpour, “Multiscale, multiphysics network modeling of shale matrix gas flows”, Transport in Porous Media, 99:2 (2013), 377–390 | DOI
[15] L. Chen, L. Zhang, Q. Kang, H. S. Viswanathan, J. Yao, W. Tao, “Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusevity”, Scientific Reports, 5 (2015), 80–89
[16] E. V. Lavrukhin, M. V. Karsanina, A. F. Izmailov, K. M. Gerke, “Uvelichenie obieemov chislennogo modelirovaniia v masshtabe por: metod razbieniia na podkuby pri vydelenii porosetevykh modelei”, Inform. agentstvo Neftegaz.RU interneshnl (Moskva), 2019, no. 7 (91), 70–75
[17] K. M. Gerke et al., “Improving watershed-based pore-network extraction method using maximum inscribed ball pore-body positioning”, Advances in Water Res., 140 (2020), 103576 | DOI
[18] X. Miao, K. M. Gerke, T. O. Sizonenko, “A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications”, Advances in Water Resources, 105 (2017), 162–172 | DOI
[19] S. Roy, R. Raju, H. F. Chuang, B. A. Cruden, M. Meyyappan, “Modeling gas flow through microchannels and nanopores”, Journal of applied physics, 93:8 (2003), 4870–4879 | DOI
[20] J. Ma, J. P. Sanchez, K. Wu, G. D. Couples, Z. Jiang, “A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials”, Fuel, 116 (2014), 498–508 | DOI