Simulations of nanoscale gas flow with Knudsen diffusion and slip flow
Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The traditional oil and gas reservoirs used for hydrocarbon production have been partially exhausted and the global energy market is looking for new unconventional energy sources. According to some estimates, shale gas resources in the world amount to 200 trillion m$^3$, but only a small part is recoverable from the point of view of modern technologies. A detailed understanding of shale petrophysics is necessary to start production. In this paper, we compare the popular Javadpour's empirical model against direct calculations of the gas flow in a nanocapillary. The study was performed on a range of flow regimes from the Stokes flow to the free molecular flow. Although in general the empirical model always gives higher predictions in comparison with calculations, these differences are minimal for pores with a radius of $\sim$ 1–20 nm. In the range of pore radii of $\sim$ 20–1000 nm, the results of the two approaches disagree significantly. Based on the data obtained, it can be safely stated that direct modelling of nanoflows can serve as a significant refinement when modelling such flows using pore-network models, since instead of empirical models for round nanocapillaries, we can use calculations for pores of any configuration. In the future, it will be of great interest to conduct a deeper study, including accounting for non-ideal gas and performing simulations for geometry of real pores obtained experimentally from geological samples, which will reliably parameterize the pore-network models of gas nano-flow.
Keywords: nanoscale gas flow, slip flow.
Mots-clés : Knudsen diffusion
@article{MM_2021_33_3_a5,
     author = {I. S. Nesterova and K. M. Gerke},
     title = {Simulations of nanoscale gas flow with {Knudsen} diffusion and slip flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a5/}
}
TY  - JOUR
AU  - I. S. Nesterova
AU  - K. M. Gerke
TI  - Simulations of nanoscale gas flow with Knudsen diffusion and slip flow
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 85
EP  - 97
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_3_a5/
LA  - ru
ID  - MM_2021_33_3_a5
ER  - 
%0 Journal Article
%A I. S. Nesterova
%A K. M. Gerke
%T Simulations of nanoscale gas flow with Knudsen diffusion and slip flow
%J Matematičeskoe modelirovanie
%D 2021
%P 85-97
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_3_a5/
%G ru
%F MM_2021_33_3_a5
I. S. Nesterova; K. M. Gerke. Simulations of nanoscale gas flow with Knudsen diffusion and slip flow. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 85-97. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a5/

[1] R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, D. V. Korost, “Solution of the Stokes Equation in Three Dimensional Geometry by the Finite Difference Method”, Math. Models and Computer Simulations, 8:1 (2016), 63–72 | DOI | MR

[2] K. M. Gerke, R. V. Vasilyev, S. Khirevich, D. Collins, M. V. Karsanina, T. O. Sizonenko, D. V. Korost, S. Lamontagne, D. Mallants, “Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies”, Computers Geosciences, 114 (2018), 41–58 | DOI

[3] V. A. Balashov, “Direct simulation of moderately rarefied gas flows within core samples”, Math. Models and Computer Simulations, 11:3 (2019), 329–340 | DOI | MR

[4] F. Javadpour, “Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)”, Journal of Canadian Petroleum Technology, 48:08 (2009), 16–21 | DOI

[5] V. A. Balashov, E. B. Savenkov et al., “Dimp-Hydro Solver for Direct Numerical Simulation of Fluid Microflows within Pore Space of Core Samples”, Mathematical Models and Computer Simulations, 12:2 (2020), 110–124 | DOI | MR | Zbl

[6] K. Gerke, R. Vasilyev, D. Korost, M. Karsanina, N. Balushkina, R. Khamidullin, G. Kalmykov, D. Mallants, SPE Unconventional Res. Conf. and Exhibition, SPE 167058 Technical paper (11–13 Nov. 2013, Brisbane, Australia) | DOI

[7] K. M. Gerke, M. V. Karsanina, D. Mallants, “Universal stochastic multiscale image fusion: an example application for shale rock”, Scientific Reports, 5 (2015), 15880 | DOI

[8] M. V. Karsanina, K. M. Gerke, E. B. Skvortsova, A. L. Ivanov, D. Mallants, “Enhancing image resolution of soils by stochastic multiscale image fusion”, Geoderma, 314 (2018), 138–145 | DOI

[9] M. V. Karsanina i dr., “Modelirovanie struktury materialov, obladaiushchikh zhelaemymi svoistvami, s pomoshchiu korreliatsionnykh funktsii”, Matem. model., 27:4 (2015), 50–63 | Zbl

[10] K. M. Gerke, M. V. Karsanina, “Improving stochastic reconstructions by weighting correlation functions in an objective function”, EPL (Europhysics Lett.), 111:5 (2015), 56002 | DOI

[11] M. V. Karsanina, K. M. Gerke, “Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions”, Physical Review Lett., 121:26 (2018), 265501 | DOI

[12] K. M. Gerke, M. V. Karsanina, R. V. Vasilyev, D. Mallants, “Improving pattern reconstructtion using directional correlation functions”, EPL (Europhysics Letters), 106:6 (2014), 66002 | DOI

[13] K. M. Gerke, M. V. Karsanina, R. Katsman, “Calculation of tensorial flow properties on pore level: Exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions”, Physical Review E, 100:5 (2019), 053312 | DOI

[14] A. Mehmani, M. Prodanović, F. Javadpour, “Multiscale, multiphysics network modeling of shale matrix gas flows”, Transport in Porous Media, 99:2 (2013), 377–390 | DOI

[15] L. Chen, L. Zhang, Q. Kang, H. S. Viswanathan, J. Yao, W. Tao, “Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusevity”, Scientific Reports, 5 (2015), 80–89

[16] E. V. Lavrukhin, M. V. Karsanina, A. F. Izmailov, K. M. Gerke, “Uvelichenie obieemov chislennogo modelirovaniia v masshtabe por: metod razbieniia na podkuby pri vydelenii porosetevykh modelei”, Inform. agentstvo Neftegaz.RU interneshnl (Moskva), 2019, no. 7 (91), 70–75

[17] K. M. Gerke et al., “Improving watershed-based pore-network extraction method using maximum inscribed ball pore-body positioning”, Advances in Water Res., 140 (2020), 103576 | DOI

[18] X. Miao, K. M. Gerke, T. O. Sizonenko, “A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications”, Advances in Water Resources, 105 (2017), 162–172 | DOI

[19] S. Roy, R. Raju, H. F. Chuang, B. A. Cruden, M. Meyyappan, “Modeling gas flow through microchannels and nanopores”, Journal of applied physics, 93:8 (2003), 4870–4879 | DOI

[20] J. Ma, J. P. Sanchez, K. Wu, G. D. Couples, Z. Jiang, “A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials”, Fuel, 116 (2014), 498–508 | DOI