On existence and uniqueness of remaining life expectancy estimates in the model of stable population
Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 73-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show existence and uniqueness of estimates for the growth parameter and the remaining life expectancy of elderly within the model of stable population with endogenous growth parameter. Results obtained point to possibility to estimate the growth parameter, assuming a graduated input data, from a general formal relation, without iterative or optimization procedures used. Presented results are of theoretical and practical importance in studying life expectancy and mortality of elderly.
Keywords: life expectancy, Malthusian parameter, age exaggeration.
Mots-clés : stable population
@article{MM_2021_33_3_a4,
     author = {D. M. Ediev},
     title = {On existence and uniqueness of remaining life expectancy estimates in the model of stable population},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/}
}
TY  - JOUR
AU  - D. M. Ediev
TI  - On existence and uniqueness of remaining life expectancy estimates in the model of stable population
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 73
EP  - 84
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/
LA  - ru
ID  - MM_2021_33_3_a4
ER  - 
%0 Journal Article
%A D. M. Ediev
%T On existence and uniqueness of remaining life expectancy estimates in the model of stable population
%J Matematičeskoe modelirovanie
%D 2021
%P 73-84
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/
%G ru
%F MM_2021_33_3_a4
D. M. Ediev. On existence and uniqueness of remaining life expectancy estimates in the model of stable population. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 73-84. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/

[1] D. M. Ediev, “Why increasing longevity may favour a PAYG pension system over a funded system”, Popul. Stud. (NY), 68:1 (2014), 95–110 | DOI

[2] A. J. G. Cairns, D. P. Blake, K. Dowd, “Modelling and Management of Mortality Risk: A Review”, Scand. Act. J., 2-3 (2008), 79–113 | DOI | MR | Zbl

[3] A. A. Petrov, I. G. Pospelov, A. A. Shananin, Opyt matematicheskogo modelirovania ekonomiki, Energoatomizdat, M., 1996, 544 pp. | MR

[4] D. E. Bloom, M. Kuhn, K. Prettner, Health and Economic Growth, Oxford Research Encyclopedia of Economics and Finance, 2019

[5] D. M. Ediev, “Kontseptsia demograficheskogo potentsiala i ee prilozhenia”, Matematicheskoe modelirovanie, 15:12 (2003), 37–74 | MR | Zbl

[6] D. M. Ediev, “Ob odnoi modeli otsenivania strategii vosstanovlenia demograficheskih poter Rossii”, Matematicheskoe modelirovanie, 17:10 (2005), 113–126 | Zbl

[7] N. B. Barkalov, Modelirovanie demograficheskogo perehoda, Izd-vo MGU, M., 1984, 80 pp.

[8] H. S. Shryock, J. S. Siegel, The Methods and Materials of Demography, United States Bureau of the Census, Washington D.C., 1973

[9] S. Horiuchi, A. J. Coale, “A Simple Equation for Estimating the Expectation of Life at Old Ages”, Popul. Stud. (NY), 36:2 (1982), 317–326 | DOI

[10] S. Mitra, “Estimating the Expectation of Life at Older Ages”, Popul. Stud. (NY), 38:2 (1984), 313–319 | DOI

[11] D. M. Ediev, “Expectation of life at old age: revisiting Horiuchi-Coale and reconciling with Mitra”, Genus, 74:1 (2018) | DOI

[12] D. M. Ediev, “On the sources of instability of the Mitra model for years of life at old age”, Comm. Stat. Case Stud. Data Anal. Appl., 6:1 (2020), 86–96

[13] D. M. Ediev, “O statisticheskoi zavisimosti ozhidaemoi prodolzhitelnosti predstoiashei zhizni ot urovnia smertnosti v zadannom vozraste”, Voprosy statisstiki, 26:6 (2019), 39–46

[14] N. Keyfitz, H. Caswell, Applied mathematical demography, Springer, 2005, 555 pp. | MR | Zbl

[15] C. L. Chiang, Life table, mortality analysis, World Health Organization, Geneva, Switzerland, 1978, xiv+399 pp.

[16] A. R. Thatcher, V. Kannisto, J. W. Vaupel, Odense Monographs on Population Aging 5: The force of mortality at ages 80 to 120, Odense University Press, Odense, 1998

[17] L. Heligman, J. H. Pollard, “The age pattern of mortality”, J. Inst. Actuar., 107:01 (1980), 49–80 | DOI

[18] A. J. Coale, “Estimating the Expectation of Life at Old Ages: Comments on the Article by Mitra”, Popul. Stud. (NY), 39:3 (1985), 507–509 | DOI

[19] S. Mitra, “On Estimating the Expectation of Life at Old Ages: Reply to Professor Coale”, Popul. Stud. (NY), 39:3 (1985), 511–512 | DOI

[20] D. M. Ediev, “Constrained Mortality Extrapolation to Old Age: An Empirical Assessment”, Eur. J. Popul., 34 (2018), 441–457 | DOI

[21] A. R. Thatcher, V. Kannisto, J. W. Vaupel, The Force of Mortality at Ages 80–120, Monographs on Population Aging, 5, Odense University Press, Odense, Denmark, 1998, 104 pp.

[22] B. Gompertz, “On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies”, Philos. Trans. R. Soc. London, 115 (1825), 513–583 | DOI

[23] Human Mortality Database. Online database sponsored by University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany), , University of California (Berkeley), The Max Planck Institute for Demographic Research, 2020 (accessed: 05.08.2020) www.mortality.org