Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_3_a4, author = {D. M. Ediev}, title = {On existence and uniqueness of remaining life expectancy estimates in the model of stable population}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {73--84}, publisher = {mathdoc}, volume = {33}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/} }
TY - JOUR AU - D. M. Ediev TI - On existence and uniqueness of remaining life expectancy estimates in the model of stable population JO - Matematičeskoe modelirovanie PY - 2021 SP - 73 EP - 84 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/ LA - ru ID - MM_2021_33_3_a4 ER -
D. M. Ediev. On existence and uniqueness of remaining life expectancy estimates in the model of stable population. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 73-84. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a4/
[1] D. M. Ediev, “Why increasing longevity may favour a PAYG pension system over a funded system”, Popul. Stud. (NY), 68:1 (2014), 95–110 | DOI
[2] A. J. G. Cairns, D. P. Blake, K. Dowd, “Modelling and Management of Mortality Risk: A Review”, Scand. Act. J., 2-3 (2008), 79–113 | DOI | MR | Zbl
[3] A. A. Petrov, I. G. Pospelov, A. A. Shananin, Opyt matematicheskogo modelirovania ekonomiki, Energoatomizdat, M., 1996, 544 pp. | MR
[4] D. E. Bloom, M. Kuhn, K. Prettner, Health and Economic Growth, Oxford Research Encyclopedia of Economics and Finance, 2019
[5] D. M. Ediev, “Kontseptsia demograficheskogo potentsiala i ee prilozhenia”, Matematicheskoe modelirovanie, 15:12 (2003), 37–74 | MR | Zbl
[6] D. M. Ediev, “Ob odnoi modeli otsenivania strategii vosstanovlenia demograficheskih poter Rossii”, Matematicheskoe modelirovanie, 17:10 (2005), 113–126 | Zbl
[7] N. B. Barkalov, Modelirovanie demograficheskogo perehoda, Izd-vo MGU, M., 1984, 80 pp.
[8] H. S. Shryock, J. S. Siegel, The Methods and Materials of Demography, United States Bureau of the Census, Washington D.C., 1973
[9] S. Horiuchi, A. J. Coale, “A Simple Equation for Estimating the Expectation of Life at Old Ages”, Popul. Stud. (NY), 36:2 (1982), 317–326 | DOI
[10] S. Mitra, “Estimating the Expectation of Life at Older Ages”, Popul. Stud. (NY), 38:2 (1984), 313–319 | DOI
[11] D. M. Ediev, “Expectation of life at old age: revisiting Horiuchi-Coale and reconciling with Mitra”, Genus, 74:1 (2018) | DOI
[12] D. M. Ediev, “On the sources of instability of the Mitra model for years of life at old age”, Comm. Stat. Case Stud. Data Anal. Appl., 6:1 (2020), 86–96
[13] D. M. Ediev, “O statisticheskoi zavisimosti ozhidaemoi prodolzhitelnosti predstoiashei zhizni ot urovnia smertnosti v zadannom vozraste”, Voprosy statisstiki, 26:6 (2019), 39–46
[14] N. Keyfitz, H. Caswell, Applied mathematical demography, Springer, 2005, 555 pp. | MR | Zbl
[15] C. L. Chiang, Life table, mortality analysis, World Health Organization, Geneva, Switzerland, 1978, xiv+399 pp.
[16] A. R. Thatcher, V. Kannisto, J. W. Vaupel, Odense Monographs on Population Aging 5: The force of mortality at ages 80 to 120, Odense University Press, Odense, 1998
[17] L. Heligman, J. H. Pollard, “The age pattern of mortality”, J. Inst. Actuar., 107:01 (1980), 49–80 | DOI
[18] A. J. Coale, “Estimating the Expectation of Life at Old Ages: Comments on the Article by Mitra”, Popul. Stud. (NY), 39:3 (1985), 507–509 | DOI
[19] S. Mitra, “On Estimating the Expectation of Life at Old Ages: Reply to Professor Coale”, Popul. Stud. (NY), 39:3 (1985), 511–512 | DOI
[20] D. M. Ediev, “Constrained Mortality Extrapolation to Old Age: An Empirical Assessment”, Eur. J. Popul., 34 (2018), 441–457 | DOI
[21] A. R. Thatcher, V. Kannisto, J. W. Vaupel, The Force of Mortality at Ages 80–120, Monographs on Population Aging, 5, Odense University Press, Odense, Denmark, 1998, 104 pp.
[22] B. Gompertz, “On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies”, Philos. Trans. R. Soc. London, 115 (1825), 513–583 | DOI
[23] Human Mortality Database. Online database sponsored by University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany), , University of California (Berkeley), The Max Planck Institute for Demographic Research, 2020 (accessed: 05.08.2020) www.mortality.org