Inverse problems of the analysis of input-output balances
Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 39-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a modification of the approach to the analysis of inter-sectoral balance. Instead of V.V. Leontiev's assumption about the constancy of the cost rates of production factors, a more realistic assumption about the constancy of the proportions of inter-industry cash flows is used in modern conditions. We propose an algorithm for solving the inverse problem that allows us to identify a model of nonlinear inter-industry balance with a utility function and production functions of Cobb-Douglas type based on the data of the symmetric input-output table. Based on the use of the Young transform and Fenchel duality, a technology for analyzing inter-sectoral relationships using this model has been developed. The technology has been tested on the data of economic statistics of Russia.
Keywords: inverse problem, symmetric table of intersectoral balance, Fenchel duality, Young transform.
Mots-clés : Lagrange multipliers
@article{MM_2021_33_3_a2,
     author = {A. V. Rassokha and A. A. Shananin},
     title = {Inverse problems of the analysis of input-output balances},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--58},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_3_a2/}
}
TY  - JOUR
AU  - A. V. Rassokha
AU  - A. A. Shananin
TI  - Inverse problems of the analysis of input-output balances
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 39
EP  - 58
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_3_a2/
LA  - ru
ID  - MM_2021_33_3_a2
ER  - 
%0 Journal Article
%A A. V. Rassokha
%A A. A. Shananin
%T Inverse problems of the analysis of input-output balances
%J Matematičeskoe modelirovanie
%D 2021
%P 39-58
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_3_a2/
%G ru
%F MM_2021_33_3_a2
A. V. Rassokha; A. A. Shananin. Inverse problems of the analysis of input-output balances. Matematičeskoe modelirovanie, Tome 33 (2021) no. 3, pp. 39-58. http://geodesic.mathdoc.fr/item/MM_2021_33_3_a2/

[1] W. Leontief, Essays in Economics. Theories, Theorizing, Facts and Policies, Routledge, 1985, 424 pp.

[2] I. D. Masakova, “The Russian Practice of Compiling Input-Output Tables: Problems and Prospects of Development”, Studies on Russian Economic Development, 30:2 (2019), 119–128 | DOI

[3] R. J. Barro, X. Sala-i-Martin, Economic Growth, The MIT Press, Massachusetts, 2003, 672 pp.

[4] D. Acemoglu, Introduction to Modern Economic Growth, Princeton University Press, 2009, 1008 pp. | Zbl

[5] D. Acemoglu, A. Ozdaglar, A. Tahbaz-Salehi, “The network origins of aggregate fluctuations”, Econometrica, 80:5 (2012), 1977–2016 | DOI | MR | Zbl

[6] A. A. Shananin, “Young Duality and Aggregation of Balances”, Doklady Mathematics, 102:1 (2020), 330–333 | DOI | DOI

[7] A. A. Shananin, “Zadacha agregirovsniia mezhotraslevogo balansa i dvoistvennost”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 2021, no. 1

[8] https://rosstat.gov.ru/accounts