Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_2_a4, author = {V. G. Nikitaev and O. B. Tamrazova and A. N. Pronichev and V. Yu. Sergeev and E. A. Druzhinina}, title = {Algorithm for analyzing the characteristics of the pigment network in the diagnosis of melanoma}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {67--81}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a4/} }
TY - JOUR AU - V. G. Nikitaev AU - O. B. Tamrazova AU - A. N. Pronichev AU - V. Yu. Sergeev AU - E. A. Druzhinina TI - Algorithm for analyzing the characteristics of the pigment network in the diagnosis of melanoma JO - Matematičeskoe modelirovanie PY - 2021 SP - 67 EP - 81 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a4/ LA - ru ID - MM_2021_33_2_a4 ER -
%0 Journal Article %A V. G. Nikitaev %A O. B. Tamrazova %A A. N. Pronichev %A V. Yu. Sergeev %A E. A. Druzhinina %T Algorithm for analyzing the characteristics of the pigment network in the diagnosis of melanoma %J Matematičeskoe modelirovanie %D 2021 %P 67-81 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a4/ %G ru %F MM_2021_33_2_a4
V. G. Nikitaev; O. B. Tamrazova; A. N. Pronichev; V. Yu. Sergeev; E. A. Druzhinina. Algorithm for analyzing the characteristics of the pigment network in the diagnosis of melanoma. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 67-81. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a4/
[1] G. A. Galil-Ogly, V. A. Molochkov, YU. V. Sergeyev (red.), Dermatoonkologiya, Meditsina dlya vsekh, M., 2005, 872 pp.
[2] V. Yu. Sergeev, Yu. Yu. Sergeev, O. B. Tamrazova, V. G. Nikitaev, A. N. Pronichev, “Automated remote diagnosis of dermatological neoplasms”, Biomed. Eng., 53:3 (2019), 194–195 | DOI | MR
[3] V. G. Nikitaev, A. N. Pronichev, O. B. Tamrazova, V. Yu. Sergeev, Yu. Yu. Sergeev, A. V. Kozyreva, E. V. Polyakov, E. A. Druzhinina, “Automated analysis of the pigment network in dermatoscopic images of melanocytic skin tumors”, Biomed. Eng., 53:4 (2019), 254–257 | DOI
[4] V. G. Nikitaev, “Medical and biological measurements: Experimental high-technology information-measuring complexes of cancer diagnosis: Problems and key points of the construction methodology”, Measurement Techniques, 58:2 (2015), 214–218 | DOI
[5] V. G. Nikitaev, “Expert systems in information measuring complexes of oncological diagnoses”, Measurement Techniques, 58:6 (2015), 719–723 | DOI
[6] V. G. Nikitaev, “Modern measurement principles in intellectual systems for a histological diagnosis of oncological illnesses”, Measurement Techniques, 58:4 (2015), 68–70 | DOI
[7] H. Kittler, C. Rosendahl, A. Cameron, P. Tschandl, Dermatoscopy: Pattern analysis of pigmented and non-pigmented lesions, Facultas Publ. AG, Vienna, Austria, 2018, 394 pp.
[8] Yu. Yu. Sergeyev, V. V. Mordovtseva, “Melanoma kogi s yavleniyamy regressa: opisanie klinicheskogo sluchaya i obzor literatury”, Klinicheskaya dermatologiya i venerologiya, 2017, no. 5, 36–41
[9] T. Russo et al, “Dermoscopy pathology correlation in melanoma”, J. Dermatol., 44 (2017), 507–514 | DOI
[10] H. Kittler et al, “Standardization of terminology in dermoscopy/dermatoscopy: Results of the third consensus conference of the International Society of Dermoscopy”, J. Am. Acad. Dermatol., 74 (2016), 1093–106 | DOI
[11] Yu. Yu. Sergeyev, V. V. Mordovtseva, “Opyt diagnostiki melanomy kozhi diametrom meneye 6 mm”, Klinicheskaya dermatologiya i venerologiya, 17:4 (2018), 97–104
[12] S. Fischer, P. Schmid, J. Guillod, “Analysis of skin lesions with pigmented networks”, Proc. of IEEE Intern. Conference on Image Proc., 1996, no. 1, 323–326 | DOI
[13] M. G. Fleming, C. Steger, J. Zhang, J. Gao, A. B. Cognetta, L. Pollak, C. R. Dyer, “Techniques for a structural analysis of dermatoscopic imagery”, Computerized Medical Imaging and Graphics, 22:5 (1998), 375–389 | DOI
[14] M. Sadeghi, M. Razmara, T. K. Lee, M. S. Atkins, “A novel method for detection of pigment network in dermoscopic images using graphs”, Computerized Medical Imaging and Graphics, 35:2 (2011), 137–143 | DOI
[15] M. Sadeghi, M. Razmara, P. Wighton, T. K. Lee, M. S. Atkins, “Modeling the dermoscopic structure pigment network using a clinically inspired feature set”, Lecture Notes in Comp. Science, 6326, 2010, 467–474 | DOI
[16] J. L. García-Arroyo, B. G. Zapirain, “Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis”, Computers in Biology and Medicine, 44:1 (2014), 144–157
[17] J. L. Garcia-Arroyo, B. García-Zapirain, “Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels”, Computer Methods and Programs in Biomedicine, 153 (2018), 61–69 | DOI
[18] K. Kropidłowski, M. Kociołek, M. Strzelecki, D. Czubiński, “Model based approach for melanoma segmentation”, Lecture Notes in Computer Science, 8671, 2014, 347–55 | DOI
[19] K. Kropidłowski, M. Kociołek, M. Strzelecki, D. Czubiński, “Nevus atypical pigment network distinction and irregular streaks detection in skin lesions images”, Signal Proc. Algorithms, Architectures, Arrangements, and Applications Conf. Proc., SPA, 2015, 66–70
[20] M. Pap, B. Harangi, A. Hajdu, “Automatic pigment network classification using a combination of classical texture descriptors and CNN features”, Proc. of IEEE Symposium on Computer-Based Medical Systems, 2017, 343–348
[21] V. G. Nikitaev, A. N. Pronichev, E. Yu. Berdnikovich, K. S. Chistov, “Strategiya postroeniya vysokotehnologichnyh komplexov komputernoy mikroskopii: opit razrabotki i vnedreniya v atomnuyu promyshlennost i medicinu”, Pribory i sistemy. Upravlenie control, diagnostic, 2011, no. 10, 1–4
[22] V. G. Nikitaev, O. V. Nagornov, A. N. Pronichev, E. V. Polyakov, V. V. Dmitrieva, S. M. Zaitsev, V. Yu. Selchuk, O. B. Tamrazova, V. Yu. Sergeev, S. A. Kobelev, A. V. Kozyreva, A. S. Skripnik, Sposob raspoznavaniya pigmentnyh novoobrazovaniy kogi, Patent na izobretenie RU 2712919 C1, 03.02.2020
[23] D. Bradley, G. Roth, Augmenting non-rigid objects with realistic lighting, Tech. Rep. NRC 47398, National Research Council of Canada, 2004