Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_2_a3, author = {G. G. Elenin and T. G. Elenina and A. A. Ivanov}, title = {On the accuracy of a family of adaptive symplectic conservative methods for the {Kepler} problem}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {55--66}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/} }
TY - JOUR AU - G. G. Elenin AU - T. G. Elenina AU - A. A. Ivanov TI - On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem JO - Matematičeskoe modelirovanie PY - 2021 SP - 55 EP - 66 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/ LA - ru ID - MM_2021_33_2_a3 ER -
%0 Journal Article %A G. G. Elenin %A T. G. Elenina %A A. A. Ivanov %T On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem %J Matematičeskoe modelirovanie %D 2021 %P 55-66 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/ %G ru %F MM_2021_33_2_a3
G. G. Elenin; T. G. Elenina; A. A. Ivanov. On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 55-66. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/
[1] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd ed., Springer, Berlin, 2006, 644 pp. | MR | Zbl
[2] L. Verlet, “Computer “experiments” on classical fluids I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev, 159 (1967), 98–103 | DOI
[3] C. Kane, J. E. Marsden, M. Ortiz, “Symplectic-energy-momentum preserving variational integrators”, J. Math. Phys., 40:7 (1999), 3353–3371 | DOI | MR | Zbl
[4] R. A. LaBudde, D. Greenspen, “Discrete mechanics. A general treatment”, J. Comp. Phys., 15 (1974), 134–167 | DOI | MR | Zbl
[5] E. Khairer, S. P. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii, v. I, Nezhestkie zadachi, Mir, M., 1990, 511 pp.; E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Springer Series in Comput. Mathematics, 8, Nonstiff Problems, Springer-Verlag, 1987 ; Second revised edition, 1993, 528 pp. | DOI | MR | Zbl
[6] J. E. Marsden, M. West, “Discrete mechanics and variational integrators”, Acta Numerica, 10 (2001), 357–514 | DOI | MR | Zbl
[7] S. Reich, “Momentum conserving symplectic integrators”, Phys. D, 76:4 (1994), 375–383 | DOI | MR | Zbl
[8] R. I. McLachan, G. R.W. Quispel, N. Robidoux, “Geometric integration using discrete gradients”, Phil. Trans. R. Soc. Lond. Ser. A, 357:1754 (1999), 1021–1045 | DOI | MR
[9] Y. Minesaki, Y. Nakamura, “A new discretization of the Kepler motion which conserves the Runge-Lenz vector”, Phys. Lett. A, 306:2-3 (2002), 127–133 | DOI | MR | Zbl
[10] R. Kozlov, “Conservative discretization of the Keplerian motions”, J. Phys. A: Math. Theor., 40:17 (2007), 4529–4539 | DOI | MR | Zbl
[11] J. L. Cieslinsk, “An orbit-preserving discretization of the classical Keplerian problem”, Phys. Lett. A, 370:1 (2007), 8–12 | DOI | MR | Zbl
[12] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 1, Mechanics, Butterworth-Heinemann, 1982, 224 pp. | MR | MR
[13] G. G. Elenin, T. G. Elenina, “Adaptive symplectic conservative numerical methods for the Kepler problem”, Differential Equations, 53:7 (2017), 923–934 | DOI | MR | Zbl
[14] G. G. Elenin, T. G. Elenina, “A one-parameter family of difference schemes for the numerical solution of the Keplerian problem”, Comp. Math. Math. Phys., 55:8 (2015), 1264–1269 | DOI | MR | Zbl