On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem
Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we describe results of the analysis of accuracy for the new single-parameter family of adaptive symplectic conservative numerical methods for the Kepler problem. The methods perform symplectic mapping from the initial to the current state and, therefore, they preserve phase volume. In contrast to the existing symplectic methods, e.g., Verlet integrator, they preserve all first integrals of the Kepler problem i.e., angular momentum, full energy and Laplace–Runge–Lenz vector in the frame of the exact arithmetic. The orbit and the velocity hodograph are preserved as well. The numerical integration adaptive step is chosen automatically based on the local features of the solution. The step decreases where phase variables change most rapidly. The methods approximate dependence of phase variables on time with either 2-nd or 4-th order depending on parameter value. The limits of computational points per orbital period are identified to guaranty the prescribed order of accuracy. When number of points is exceeding the upper limit, round-off errors dominate and further increase in the number of points is not reasonable. The upper limit of computational points decreases as an eccentricity of the trajectory increases. It is shown that there is a relationship between the value of the parameter and the number of computational points, at which the approximate solution is exact within the framework of exact arithmetic. One of the computational mathematics problems is the following: by now there is no numerical algorithm which preserve all global characteristics of the exact solution of the Cauchy problem for Hamiltonian systems in general case. The numerial methods for the Kepler problem discussed in this paper provide an example of the positive solution of this problem.
Keywords: Kepler problem, Hamiltonian system, symplectic integrators, adaptive methods, solution parametrization, order of accuracy.
@article{MM_2021_33_2_a3,
     author = {G. G. Elenin and T. G. Elenina and A. A. Ivanov},
     title = {On the accuracy of a family of adaptive symplectic conservative methods for the {Kepler} problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/}
}
TY  - JOUR
AU  - G. G. Elenin
AU  - T. G. Elenina
AU  - A. A. Ivanov
TI  - On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 55
EP  - 66
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/
LA  - ru
ID  - MM_2021_33_2_a3
ER  - 
%0 Journal Article
%A G. G. Elenin
%A T. G. Elenina
%A A. A. Ivanov
%T On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem
%J Matematičeskoe modelirovanie
%D 2021
%P 55-66
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/
%G ru
%F MM_2021_33_2_a3
G. G. Elenin; T. G. Elenina; A. A. Ivanov. On the accuracy of a family of adaptive symplectic conservative methods for the Kepler problem. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 55-66. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a3/

[1] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd ed., Springer, Berlin, 2006, 644 pp. | MR | Zbl

[2] L. Verlet, “Computer “experiments” on classical fluids I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev, 159 (1967), 98–103 | DOI

[3] C. Kane, J. E. Marsden, M. Ortiz, “Symplectic-energy-momentum preserving variational integrators”, J. Math. Phys., 40:7 (1999), 3353–3371 | DOI | MR | Zbl

[4] R. A. LaBudde, D. Greenspen, “Discrete mechanics. A general treatment”, J. Comp. Phys., 15 (1974), 134–167 | DOI | MR | Zbl

[5] E. Khairer, S. P. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii, v. I, Nezhestkie zadachi, Mir, M., 1990, 511 pp.; E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations, v. I, Springer Series in Comput. Mathematics, 8, Nonstiff Problems, Springer-Verlag, 1987 ; Second revised edition, 1993, 528 pp. | DOI | MR | Zbl

[6] J. E. Marsden, M. West, “Discrete mechanics and variational integrators”, Acta Numerica, 10 (2001), 357–514 | DOI | MR | Zbl

[7] S. Reich, “Momentum conserving symplectic integrators”, Phys. D, 76:4 (1994), 375–383 | DOI | MR | Zbl

[8] R. I. McLachan, G. R.W. Quispel, N. Robidoux, “Geometric integration using discrete gradients”, Phil. Trans. R. Soc. Lond. Ser. A, 357:1754 (1999), 1021–1045 | DOI | MR

[9] Y. Minesaki, Y. Nakamura, “A new discretization of the Kepler motion which conserves the Runge-Lenz vector”, Phys. Lett. A, 306:2-3 (2002), 127–133 | DOI | MR | Zbl

[10] R. Kozlov, “Conservative discretization of the Keplerian motions”, J. Phys. A: Math. Theor., 40:17 (2007), 4529–4539 | DOI | MR | Zbl

[11] J. L. Cieslinsk, “An orbit-preserving discretization of the classical Keplerian problem”, Phys. Lett. A, 370:1 (2007), 8–12 | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 1, Mechanics, Butterworth-Heinemann, 1982, 224 pp. | MR | MR

[13] G. G. Elenin, T. G. Elenina, “Adaptive symplectic conservative numerical methods for the Kepler problem”, Differential Equations, 53:7 (2017), 923–934 | DOI | MR | Zbl

[14] G. G. Elenin, T. G. Elenina, “A one-parameter family of difference schemes for the numerical solution of the Keplerian problem”, Comp. Math. Math. Phys., 55:8 (2015), 1264–1269 | DOI | MR | Zbl