Numerical simulation of heat flux around a ballistic model based on the hyperbolic quasi-gasdynamic system of equations
Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of supersonic flow of viscous heat-conducting gas around the ballistic model (HB-2) for various angles of attack $\alpha = 0, 8, 16^\circ$ and temperatures of the model surface was carried out on the basis of a compact version of the hyperbolic system of quasi-gasdynamic equations. Three-dimensional features of the flow and heat flux’s dependence on the angle of attack and wall temperature were investigated. The presence of an angle of attack leads to the formation of two longitudinal vortices on the model’s leeward side near the symmetry plane. These separation regions significantly affect the distribution of the heat flux on the leeward surface.
Mots-clés : quasi-gasdynamic system of equations
Keywords: HB-2 model, isothermal wall, heat flux density.
@article{MM_2021_33_2_a2,
     author = {B. N. Chetverushkin and V. E. Borisov and A. A. Davydov and A. E. Lutsky and Ya. V. Khankhasaeva},
     title = {Numerical simulation of heat flux around a ballistic model based on the hyperbolic quasi-gasdynamic system of equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a2/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
AU  - V. E. Borisov
AU  - A. A. Davydov
AU  - A. E. Lutsky
AU  - Ya. V. Khankhasaeva
TI  - Numerical simulation of heat flux around a ballistic model based on the hyperbolic quasi-gasdynamic system of equations
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 41
EP  - 54
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a2/
LA  - ru
ID  - MM_2021_33_2_a2
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%A V. E. Borisov
%A A. A. Davydov
%A A. E. Lutsky
%A Ya. V. Khankhasaeva
%T Numerical simulation of heat flux around a ballistic model based on the hyperbolic quasi-gasdynamic system of equations
%J Matematičeskoe modelirovanie
%D 2021
%P 41-54
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a2/
%G ru
%F MM_2021_33_2_a2
B. N. Chetverushkin; V. E. Borisov; A. A. Davydov; A. E. Lutsky; Ya. V. Khankhasaeva. Numerical simulation of heat flux around a ballistic model based on the hyperbolic quasi-gasdynamic system of equations. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 41-54. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a2/

[1] B. A. Zemlyanskii, V. V. Lunev, V. I. Vlasov, A. B. Gorshkov, G. N. Zalogin, R. V. Kovalev, V. P. Marinin, I. N. Murzinov, Konvektivnyi teploobmen letatel'nykh apparatov, Fizmatlit, M., 2014

[2] S. T. Surzhikov, Radiatsionnaya gazovaya dinamika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli, IPMekh RAN, M., 2013

[3] E. H. Hirschel, C. Weiland, Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles, Springer-Verlag, Berlin–Heidelberg, 2009 | Zbl

[4] T. G. Elizarova, B. N. Chetverushkin, “On a computational algorithm for calculating gas dynamic flows”, Dokl. Akad. Nauk SSSR, 279:1 (1984), 80–84

[5] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike, Izd. MGU, M., 1999

[6] T. G. Elizarova, Kvazigazodinamicheskie uravneniya i metody rascheta vyazkikh techenii, Nauchnyi mir, M., 2007

[7] B. Chetverushkin, N. D'Ascenzo, S. Ishanov, V. Saveliev, “Hyperbolic type explicit kinetic scheme of magneto gas dynamic for high performance computing systems”, Rus. J. Num. Analysis. Math. Modelling, 30 (2015), 27–36 | MR | Zbl

[8] B. N. Chetverushkin, N. D'Ascenzo, A. V. Saveliev, V. I. Saveliev, “Simulation of astrophysical phenomena on the basis of high-performance computations”, Dokl. Math., 95:1 (2017), 68–71 | DOI | MR | Zbl

[9] A. E. Lutskii, B. N. Chetverushkin, “Compact Version of the Quasi-Gasdynamic System for Modeling a Viscous Compressible Gas”, Differential Equations, 55:4 (2019), 575–580 | DOI | MR | Zbl

[10] B. N. Chetverushkin, I. A. Znamenskaya, A. E. Lutsky, Ya. V. Khankhasaeva, “Numerical simulation of interaction and evolution of discontinuities in a channel based on a compact form of quasi-gasdynamic equations”, Math. Models Comp. Simul., 2021, no. 1 | MR | Zbl

[11] J. D. Gray, Summary Report on Aerodynamic Characteristics of Standard Models HB-1 and HB-2, AEDC-TDR-64-137, 1964

[12] Dj. Vuković, D. Damljanović, “HB-2 high-velocity correlation model at high angles of attack in supersonic wind tunnel tests”, Chinese Journal of Aeronautics, 32:7 (2019), 1565–1576 | DOI

[13] R. Ceresuela, Mesure's d'efforts et de pressions sur la maquette balistique etalon HB-2 de Mach 2 a Mach 16,5, Report No Note Technique 13/1879 A, ONERA, 1964

[14] Shigeru Kuchi-Ishi, Shigeya Watanabe, Shinji Nagai, Shoichi Tsuda, Tadao Koyama, Noriaki Hirabayashi, Hideo Sekine, Koichi Hozumi, Comparative Force/Heat Flux Measurements between JAXA Hypersonic Test Facilities Using Standard Model HB-2, JAXA-RR-04-035E

[15] A. S. Kryuchkova, “Numerical simulation of supersonic flows over ballistic models using UST3D programming code”, Physical-Chemical Kinetics in Gas Dynamics, 19:4 (2018)

[16] N. P. Adamov, L. G. Vasenev, V. I. Zvegintsev, I. I. Mazhul, D. G. Nalivaichenko, A. V. Novikov, A. M. Kharitonov, S. I. Shpak, “Characteristics of the AT-303 hypersonic wind tunnel. Part 2. Aerodynamics of the HB-2 reference model”, Thermophysics and Aeromech., 13:2 (2006) | DOI

[17] S. R. Allmaras, F. T. Johnson, P. R. Spalart, “Modifications and Clarifications for the Imple-mentation of the Spalart-Allmaras Turbulence Model”, Seventh International Conference on CFD (ICCFD7) (Big Island, Hawaii, 9–13 July 2012)

[18] I. A. Ivakhnenko, S. V. Polyakov, B. N. Chetverushkin, “Quasi-hydrodynamic model and small scale turbulence”, Math. Models Comp. Simul., 1:1 (2009), 44–50 | DOI | MR | Zbl

[19] V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, Programmnyi kompleks ARES dlya rascheta trekhmernykh turbulentnykh techenii vyazkogo szhimaemogo gaza na vysokoproizvoditel'nykh vychislitel'nykh sistemakh, Svidetel'stvo o registratsii programmy dlya EVM RU 2019667338, 23.12.2019