Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_2_a1, author = {M. M. Krasnov and V. A. Balashov and E. B. Savenkov}, title = {A grid-operator framework for efficient implementation of explicit finite difference schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--40}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a1/} }
TY - JOUR AU - M. M. Krasnov AU - V. A. Balashov AU - E. B. Savenkov TI - A grid-operator framework for efficient implementation of explicit finite difference schemes JO - Matematičeskoe modelirovanie PY - 2021 SP - 20 EP - 40 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a1/ LA - ru ID - MM_2021_33_2_a1 ER -
%0 Journal Article %A M. M. Krasnov %A V. A. Balashov %A E. B. Savenkov %T A grid-operator framework for efficient implementation of explicit finite difference schemes %J Matematičeskoe modelirovanie %D 2021 %P 20-40 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a1/ %G ru %F MM_2021_33_2_a1
M. M. Krasnov; V. A. Balashov; E. B. Savenkov. A grid-operator framework for efficient implementation of explicit finite difference schemes. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 20-40. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a1/
[1] NVidia CUDA http://www.nvidia.com/object/cuda_home_new.html
[2] A. N. Andrianov, T. P. Baranova, A. B. Bugerya, K. N. Efimkin, “Raspredelenie vychislenij v gibridnyh vychislitel'nyh sistemah pri translyacii programm na yazyke NORMA”, Vych. met. programmirovanie, 20:3 (2019), 224–236 | DOI
[3] YAzyk programmirovaniya NORMA
[4] DVM sistema
[5] Blitz++ Library on SourceForge.net http://sourceforge.net/projects/blitz/
[6] Luis M. de la Cruz, Eduardo Ramos, “General template units for the finite volume method in boxshaped domains”, ACM Trans. Math. Softw., 43:1 (2016), 1, 32 pp. | DOI | MR
[7] M. M. Krasnov, “Operator library for solving multidimensional mathematical physics problems on CUDA”, Mat. Model., 27:3 (2015), 109–120 | Zbl
[8] M. M. Krasnov, Setochno-operatornyj podhod k programmirovaniyu zadach matematicheskoj fiziki, Avtoref. kand. diss.
[9] B. Stroustrup, The C++ Programming Language, v. 2, Fourth Edition, Addison-Wesley, 2013, 1368 pp.
[10] D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming, Addison-Wesley, 2004, 388 pp.
[11] M. M. Krasnov, Metaprogrammirovanie shablonov C++ v zadachah matematicheskoj fiziki, IPM im. M.V. Keldysha, M., 2017, 84 pp. | MR
[12] T. Veldhuizen, “Expression Templates”, C++ Report, 7:5 (1995), 26–31
[13] J. O. Coplien, “Curiously Recurring Template Patterns”, C++ Report, 1995, 24–27 https://sites.google.com/a/gertrudandcope.com/info/Publications/InheritedTemplate.pdf
[14] D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete Guide, Addison-Wesley Professional, 2002, 560 pp.
[15] V. Balashov, A. Zlotnik, E. Savenkov, “Analysis of a regularized model for the isothermal two-component mixture with the diffuse interface”, Russian Journal on Numerical Analysis and Mathematical Modelling, 32:6 (2017), 347–358 | DOI | MR | Zbl
[16] V. Balashov, A. Zlotnik, “An energy dissipative spatial discretization for the regularized comp-ressible Navier-Stokes-Cahn-Hilliard system of equations”, Mathematical Modelling and Analysis, 25:1 (2020), 110–129 | DOI | MR
[17] gridmath on GitHub, https://github.com/kmm1965/mathlib