Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme
Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that it is possible to use the non-dissipative CABARET scheme to find the conditions for the occurrence of thermoacoustic instability (vibrational combustion) in the combustion chambers of gas turbine engines. The propagation of long waves in the gas-dynamic channel is described quite accurately by a system of quasilinear equations of gas dynamics, averaged over the cross section. Numerical modeling of the dynamics of acoustic disturbances and their interaction with the combustion zone (in the presence of feedbacks) using non-dissipative difference schemes (direct modeling) is a real alternative to the so-called low-order network models that replace the acoustic channel (by analogy with AC power grids) with a sequence of four-port or six-port networks. The advantages of direct modeling include the simple accounting for geometric factors, nonlinear effects, and the possibility of using more realistic combustion models. As an example of using the direct method, a model problem of the excitation of sound vibrations in a tube in the presence of heat sources (Rijke tube) is solved. The results demonstrated the high accuracy of the method in determining the growth rate of unstable modes, comparable to the accuracy of the results obtained using low-order network models.
Keywords: thermal acoustics, balance-characteristic methods, CABARET scheme, Rijke tube.
Mots-clés : vibration combustion
@article{MM_2021_33_2_a0,
     author = {N. A. Afanasiev and V. M. Goloviznin and V. N. Semenov and A. M. Sipatov and S. S. Nesterov},
     title = {Direct simulation of thermoacoustic instability in gas generators using {{\textquotedblleft}CABARET{\textquotedblright}} scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/}
}
TY  - JOUR
AU  - N. A. Afanasiev
AU  - V. M. Goloviznin
AU  - V. N. Semenov
AU  - A. M. Sipatov
AU  - S. S. Nesterov
TI  - Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 19
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/
LA  - ru
ID  - MM_2021_33_2_a0
ER  - 
%0 Journal Article
%A N. A. Afanasiev
%A V. M. Goloviznin
%A V. N. Semenov
%A A. M. Sipatov
%A S. S. Nesterov
%T Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme
%J Matematičeskoe modelirovanie
%D 2021
%P 3-19
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/
%G ru
%F MM_2021_33_2_a0
N. A. Afanasiev; V. M. Goloviznin; V. N. Semenov; A. M. Sipatov; S. S. Nesterov. Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/

[1] S. R. Stow, A. P. Dowling, “Low-Order Modelling of Thermoacoustic Limit Cycles”, Proc. of ASME Turbo Expo 2004: Power for Land, Sea, and Air, v. 1, Turbo Expo 2004, 2004, 775–786 | DOI

[2] S. R. Stow, A. P. Dowling, “A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations”, ASME. J. Eng. Gas Turbines Power, 131:3 (2009), 031502 | DOI

[3] X. Han, J. Li, A. S. Morgans, “Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model”, Combustion and Flame, 162:10 (2015), 3632–3647 | DOI

[4] O. Schulz, U. Doll, D. Ebi, J. Droujko, C. Bourquard, N. Noiray, “Thermoacoustic instability in a sequential combustor: Large eddy simulation and experiments”, Proc. of Comb. Ins., 37:4 (2019), 5325–5332 | DOI

[5] I. Hernández, G. Staffelbach, T. Poinsot, J. C. R. Casado, J. B. W. Kok, “LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor”, Comptes Rendus Mécanique, 341:1-2 (2013), 121–130 | DOI

[6] P. Wolf, G. Staffelbach, A. Roux, L. Gicquel, T. Poinsot, V. Moureau, “Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines”, Comptes Rendus Mécanique, 337:6-7 (2009), 385–394 | DOI

[7] C. F. Silva, T. Emmert, Stefan Jaensch, W. Polifke, “Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame”, Combustion and Flame, 162:9 (2015), 3370–3378 | DOI

[8] E. Courtine, L. Selle, T. Poinsot, “DNS of Intrinsic ThermoAcoustic modes in laminar premixed flames”, Combustion and Flame, 162:11 (2015), 4331–4341 | DOI

[9] J. Li, D. Yang, C. Luzzato, A. S. Morgans, Open Source Combustion Instability Low Order Simulator (OSCILOS), Technical Report, 2017

[10] S. Ducruix, D. Durox, S. Candel, “Theoretical and experimental determinations of the transfer function of a laminar premixed flame”, Proc. of Comb. Inst., 28 (2000), 765–773 | DOI

[11] Z. Han, S. Hochgreb, “The response of stratified swirling flames to acoustic forcing: Experiments and comparison to model”, Proc. of the Combustion Inst., 35 (2015), 3309–3315 | DOI

[12] T. Schuller, D. Durox, S. Candel, “A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics”, Combustion and Flame, 134 (2003), 21–34 | DOI

[13] H. Krediet, C. Beck, W. Krebs, J. Kok, “Saturation mechanism of the heat release response of a premixed swirl flame using LES”, Proc. of Comb. Inst., 34 (2013), 1223–1230 | DOI

[14] X. Han, A. S. Morgans, “Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver”, Combustion Flame, 162 (2015), 1778–1792 | DOI

[15] F. A. Williams, “3. Turbulent Combustion”, The Mathematics of Combustion, SIAM, Philadelphia, 1985, 97–131 | DOI

[16] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh system, Izdatelstvo Moskovskogo universiteta, M., 2013, 467 pp.

[17] V. M. Goloviznin, S. A. Karabasov, “Nelineinaia korrektsia skhemy Kabare”, Matem. Modelirovanie, 10:12 (1998), 107–123

[18] B. V. Raushenbakh, Vibratsionnoe gorenie, Fizmatlit, M., 1961, 500 pp. | MR

[19] V. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “kabare””, Matem. Modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[20] A. Chintagunta, S. E. Naghibi, S. A. Karabasov, “Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems”, Comp. Fluids, 169 (2018) | MR | Zbl