Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_2_a0, author = {N. A. Afanasiev and V. M. Goloviznin and V. N. Semenov and A. M. Sipatov and S. S. Nesterov}, title = {Direct simulation of thermoacoustic instability in gas generators using {{\textquotedblleft}CABARET{\textquotedblright}} scheme}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--19}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/} }
TY - JOUR AU - N. A. Afanasiev AU - V. M. Goloviznin AU - V. N. Semenov AU - A. M. Sipatov AU - S. S. Nesterov TI - Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme JO - Matematičeskoe modelirovanie PY - 2021 SP - 3 EP - 19 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/ LA - ru ID - MM_2021_33_2_a0 ER -
%0 Journal Article %A N. A. Afanasiev %A V. M. Goloviznin %A V. N. Semenov %A A. M. Sipatov %A S. S. Nesterov %T Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme %J Matematičeskoe modelirovanie %D 2021 %P 3-19 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/ %G ru %F MM_2021_33_2_a0
N. A. Afanasiev; V. M. Goloviznin; V. N. Semenov; A. M. Sipatov; S. S. Nesterov. Direct simulation of thermoacoustic instability in gas generators using “CABARET” scheme. Matematičeskoe modelirovanie, Tome 33 (2021) no. 2, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2021_33_2_a0/
[1] S. R. Stow, A. P. Dowling, “Low-Order Modelling of Thermoacoustic Limit Cycles”, Proc. of ASME Turbo Expo 2004: Power for Land, Sea, and Air, v. 1, Turbo Expo 2004, 2004, 775–786 | DOI
[2] S. R. Stow, A. P. Dowling, “A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations”, ASME. J. Eng. Gas Turbines Power, 131:3 (2009), 031502 | DOI
[3] X. Han, J. Li, A. S. Morgans, “Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model”, Combustion and Flame, 162:10 (2015), 3632–3647 | DOI
[4] O. Schulz, U. Doll, D. Ebi, J. Droujko, C. Bourquard, N. Noiray, “Thermoacoustic instability in a sequential combustor: Large eddy simulation and experiments”, Proc. of Comb. Ins., 37:4 (2019), 5325–5332 | DOI
[5] I. Hernández, G. Staffelbach, T. Poinsot, J. C. R. Casado, J. B. W. Kok, “LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor”, Comptes Rendus Mécanique, 341:1-2 (2013), 121–130 | DOI
[6] P. Wolf, G. Staffelbach, A. Roux, L. Gicquel, T. Poinsot, V. Moureau, “Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines”, Comptes Rendus Mécanique, 337:6-7 (2009), 385–394 | DOI
[7] C. F. Silva, T. Emmert, Stefan Jaensch, W. Polifke, “Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame”, Combustion and Flame, 162:9 (2015), 3370–3378 | DOI
[8] E. Courtine, L. Selle, T. Poinsot, “DNS of Intrinsic ThermoAcoustic modes in laminar premixed flames”, Combustion and Flame, 162:11 (2015), 4331–4341 | DOI
[9] J. Li, D. Yang, C. Luzzato, A. S. Morgans, Open Source Combustion Instability Low Order Simulator (OSCILOS), Technical Report, 2017
[10] S. Ducruix, D. Durox, S. Candel, “Theoretical and experimental determinations of the transfer function of a laminar premixed flame”, Proc. of Comb. Inst., 28 (2000), 765–773 | DOI
[11] Z. Han, S. Hochgreb, “The response of stratified swirling flames to acoustic forcing: Experiments and comparison to model”, Proc. of the Combustion Inst., 35 (2015), 3309–3315 | DOI
[12] T. Schuller, D. Durox, S. Candel, “A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics”, Combustion and Flame, 134 (2003), 21–34 | DOI
[13] H. Krediet, C. Beck, W. Krebs, J. Kok, “Saturation mechanism of the heat release response of a premixed swirl flame using LES”, Proc. of Comb. Inst., 34 (2013), 1223–1230 | DOI
[14] X. Han, A. S. Morgans, “Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver”, Combustion Flame, 162 (2015), 1778–1792 | DOI
[15] F. A. Williams, “3. Turbulent Combustion”, The Mathematics of Combustion, SIAM, Philadelphia, 1985, 97–131 | DOI
[16] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh system, Izdatelstvo Moskovskogo universiteta, M., 2013, 467 pp.
[17] V. M. Goloviznin, S. A. Karabasov, “Nelineinaia korrektsia skhemy Kabare”, Matem. Modelirovanie, 10:12 (1998), 107–123
[18] B. V. Raushenbakh, Vibratsionnoe gorenie, Fizmatlit, M., 1961, 500 pp. | MR
[19] V. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “kabare””, Matem. Modelirovanie, 10:1 (1998), 101–116 | MR | Zbl
[20] A. Chintagunta, S. E. Naghibi, S. A. Karabasov, “Flux-corrected dispersion-improved CABARET schemes for linear and nonlinear wave propagation problems”, Comp. Fluids, 169 (2018) | MR | Zbl