Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_1_a7, author = {O. A. Kovyrkina and V. V. Ostapenko}, title = {On accuracy of {MUSCL} type scheme when calculating discontinuous solutions}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {105--121}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a7/} }
TY - JOUR AU - O. A. Kovyrkina AU - V. V. Ostapenko TI - On accuracy of MUSCL type scheme when calculating discontinuous solutions JO - Matematičeskoe modelirovanie PY - 2021 SP - 105 EP - 121 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a7/ LA - ru ID - MM_2021_33_1_a7 ER -
O. A. Kovyrkina; V. V. Ostapenko. On accuracy of MUSCL type scheme when calculating discontinuous solutions. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 105-121. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a7/
[1] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnych reshenii uravnenii gidrodinamiki”, Matem. Sbornik, 47:3 (1959), 271–306 | Zbl
[2] B. Van Leer, “Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comp. Phys., 32:1 (1979), 101–136 | DOI | Zbl
[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | Zbl
[4] A. Harten, S. Osher, “Uniformly high-order accurate nonoscillatory schemes”, SIAM J. Numer. Analys, 24:2 (1987), 279–309 | DOI | Zbl
[5] G. S. Jiang, C. W. Shu, “Efficient implementation of weighted ENO schemes”, J. Comp. Phys., 126 (1996), 202–228 | DOI | Zbl
[6] S. A. Karabasov, V. M. Goloviznin, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. Comp. Phys., 228 (2009), 7426–7451 | DOI | Zbl
[7] V. V. Ostapenko, “Approximation of conservation laws by high-resolution difference schemes”, USSR CM, 30:5 (1990), 91–100 | DOI | Zbl
[8] V. V. Ostapenko, “A method of increasing the order of the weak approximation of the conservationlaws on discontinuous solutions”, CM, 36:10 (1996), 1443–1451 | Zbl
[9] V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite-difference schemes for unsteady shock waves”, Comp. Math. and Math. Phys., 40:12 (2000), 1784–1800 | Zbl
[10] V. V. Ostapenko, “Convergence of finite-difference schemes behind a shock front”, Comp. Math. and Math. Phys., 37:10 (1997), 1161–1172 | Zbl
[11] J. Casper, M. H. Carpenter, “Computational consideration for the simulation of shock-induced sound”, SIAM J. Sci. Comp., 19:1 (1998), 813–828 | DOI | Zbl
[12] B. Engquist, B. Sjogreen, “The convergence rate of finite difference schemes in the presence of shocks”, SIAM J. Numer. Anal., 35 (1998), 2464–2485 | DOI | Zbl
[13] O. A. Kovyrkina, V. V. Ostapenko, “On the convergence of shock-capturing difference schemes”, Dokl. Math., 82:1 (2010), 599–603 | DOI | Zbl
[14] O. A. Kovyrkina, V. V. Ostapenko, “On the practical accuracy of shock-capturing schemes”, Math. Models Comp. Simul., 6:2 (2014), 183–191 | DOI | MR | Zbl
[15] N. A. Mikhailov, “The convergence order of WENO schemes behind a shock front”, Math. Models Comp. Simul., 7:5 (2015), 467–474 | DOI | MR | Zbl
[16] O. A. Kovyrkina, V. V. Ostapenko, “On monotonicity and accuracy of CABARET scheme calculating weak solutions with shocks”, Comp. Technologies, 23:2 (2018), 37–54
[17] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws”, J. Comp. Phys., 87:2 (1990), 408–463 | DOI | MR | Zbl
[18] A. Kurganov, E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations”, J. Comp. Phys., 160:1 (2000), 241–282 | DOI | MR | Zbl
[19] V. V. Ostapenko, Hyperbolic systems of conservation laws and its application to the theory of shallow water, Second ed., NSU, Novosibirsk, 2014, 234 pp.
[20] V. V. Rusanov, “Difference schemes of third order accuracy for the through calculation of discontinuous solutions”, Dokl. Akad. Nauk SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[21] V. V. Ostapenko, “Finite-difference approximation of the Hugoniot conditions on a shock front propagating with variable velocity”, Comp. Math. and Math. Phys., 38:8 (1998), 1299–1311 | MR | Zbl
[22] O. A. Kovyrkina, V. V. Ostapenko, “On the construction of combined finite-difference schemes of high accuracy”, Dokl. Math., 97:1 (2018), 77–81 | DOI | DOI | MR | Zbl
[23] M. D. Bragin, B. V. Rogov, “On the accuracy of bicompact schemes as applied to computation of unsteady shock waves”, Comp. Math. Math. Phys., 58:9 (2018), 1435–1450 | DOI | DOI | MR | MR | Zbl
[24] O. A. Kovyrkina, V. V. Ostapenko, “Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws”, Comp. Math. and Math. Phys., 58:9 (2018), 1435–1450 | DOI | DOI | MR | Zbl
[25] N. A. Zyuzina, O. A. Kovyrkina, V. V. Ostapenko, “Monotone finite-difference scheme preserving high accuracy in regions of shock influence”, Dokl. Math., 98:2 (2018), 506–510 | DOI | DOI | MR | MR | Zbl
[26] V. V. Ostapenko, N. A. Khandeeva, “The accuracy of finite-difference schemes calculating the interaction of shock waves”, Dokl. Phys., 64:4 (2019), 197–201 | DOI | DOI
[27] M. E. Ladonkina, O. A. Neklyudova, V. V. Ostapenko, V. F. Tishkin, “Combined DG scheme that maintains increased accuracy in shock wave areas”, Dokl. Math., 100:3 (2019), 519–523 | DOI | DOI | Zbl
[28] M. D. Bragin, B. V. Rogov, “Combined monotone bicompact scheme of higher order accuracy in domains of influence of nonstationary shock waves”, Doklady Math, 101:3 (2020), 239–243 | DOI | DOI
[29] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated problems, advanced numerical approximation of nonlinear hyperbolic equations”, Lecture Notes in Mathematics, 1697, 1998, 151–268 | MR | Zbl
[30] A. Gelb, E. Tadmor, “Spectral reconstruction of piecewise smooth functions from their discrete data”, Math. Model. Numer. Anal., 36 (2002), 155–175 | DOI | MR | Zbl
[31] F. Arandiga, A. Baeza, R. Donat, “Vector cell-average multiresolution based on Hermite interpolation”, Adv. Comp. Math., 28 (2008), 1–22 | DOI | MR | Zbl
[32] J. L. Guermond, R. Pasquetti, B. Popov, “Entropy viscosity method for nonlinear conservation laws”, J. Comput. Phys., 230 (2011), 4248–4267 | DOI | MR | Zbl
[33] J. Dewar, A. Kurganov, M. Leopold, “Pressure-based adaption indicator for compressible Euler equations”, Numer. Methods Partial Dierential Equations, 31 (2015), 1844–1874 | DOI | MR | Zbl