Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_1_a6, author = {A. M. Blokhin and R. E. Semenko}, title = {Studying of the relations on the flat strong discontinuity for the polymeric liquid}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {89--104}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a6/} }
TY - JOUR AU - A. M. Blokhin AU - R. E. Semenko TI - Studying of the relations on the flat strong discontinuity for the polymeric liquid JO - Matematičeskoe modelirovanie PY - 2021 SP - 89 EP - 104 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a6/ LA - ru ID - MM_2021_33_1_a6 ER -
A. M. Blokhin; R. E. Semenko. Studying of the relations on the flat strong discontinuity for the polymeric liquid. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 89-104. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a6/
[1] P. G. De Gennes, Scaling concept in polymer physics, Cornell University Press, London, 1979, 324 pp.
[2] L. D. Landau, E. M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford, 1987, 539 pp. | MR | MR | Zbl
[3] J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc., 200:1063 (1950), 523–541 | MR | Zbl
[4] A. I. Leonov, A. N. Prokunin, Nonlinear phenomena in flows of viscoelastic polymer fluids, Chapman and Hall, New York, 1994, 475 pp.
[5] P. J. Flory, Statistical mechanics of chained molecules, Interscience, Geneva, 1969, 432 pp.
[6] P. E. Rouse, “A theory of the linear viscoelastic properties of dilute solutions of coiling polymers”, J. Chem. Phys., 21:7 (1953), 1271–1280 | DOI
[7] M. Doi, S. Edwards, The theory of polymer dynamics, Clarendon press, Oxford, 1986, 391 pp.
[8] R. Bird, R. Armstrong, O. Hassager, Dynamics of polymeric liquids, Wiley, York, 1987, 649 pp. | MR
[9] H. Giesekus, “A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility”, J. Non-Newt. Fluid Mech., 11 (1982), 69–109 | DOI | Zbl
[10] V. N. Pokrovskii, The mesoscopic theory of polymer dynamics, 2nd Ed., Springer, New York–London–Dordrecht-Heidelberg, 2010, 256 pp.
[11] Iu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Vvedenie v mezoskopicheskuiu teoriiu tekuchikh polimernykh sistem, AltGPA, Barnaul, 2012, 122 pp.
[12] L. I. Sedov, A course in continuum mechanics, v. 1, Wolters Noordhoff Publ., Groningen, 1972, 309 pp.
[13] P. A. Yampol'skii, I. M. Barkalov, V. I. Gol'danskii et. al., “Chemical reactions in polymers caused by shock waves”, Polymer Sci. USSR, 10:4 (1967), 929–939 | DOI
[14] S. W. J. Brown, P. R. Williams, “An experimental study of liquid jets formed by bubble-shock wave interaction in dilute polymer solutions”, Exper. in Fluids, 29:1 (2000), 56–65 | DOI
[15] V. Yu. Liapidevskii, V. V. Pukhnachev, A. Tani, “Nonlinear waves in incompressible viscoelastic Maxwell medium”, Wave Mot., 48:8 (2011), 727–737 | DOI | MR | Zbl
[16] Iu. L. Kuznethova, O. I. Skulskii, “Rassloenie potoka zhidkosti s nemonotonnoi zavisimostiu napriazheniia techeniia ot skorosti deformatsii”, Vych. mekh. splosh. sred, 11:1 (2018), 68–78
[17] N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comp. Math. and Math. Phys., 54:5 (2014), 874–899 | DOI | MR | Zbl
[18] N. V. Bambaeva, A. M. Blokhin, “The t-Hyperbolicity of a nonstationary system governing flows of polymeric media”, Journ. of Math. Sci., 188:4 (2013), 333–343 | DOI | MR | Zbl
[19] N. V. Bambaeva, A. M. Blokhin, “Symmetrization of the system of equations governing an incompressible viscoelastic polymeric fluid”, Journ. of Math. Sci., 203:4 (2014), 436–443 | DOI | MR | Zbl
[20] L. V. Ovsiannikov, Lektsii po osnovam gazovoi dinamiki, Nauka, M., 1981, 368 pp. | MR
[21] L. G. Loitsianskii, Mekhanika zhidkosti i gaza, Nauka, M., 1978, 677 pp.
[22] J. M. Delhaye, “Jump conditions and entropy sources in two-phase systems. Local instant formulation”, Int. J. Multiphase Flow, 1:3 (1974), 395–409 | DOI | Zbl
[23] Y. Shibata, “On the r-boundedness for the two phase problem with phase transition: Compressible-incompressible model problem”, Funkcialaj Ekvacioj, 59:2 (2016), 243–287 | DOI | MR | Zbl
[24] A. M. Blokhin, Yu. L. Thakhinin, Stability of strong discontinuities in magnetohydrodynamics and electrohydrodynamics, Nova Science Publishers, Inc., New York, 2003, 307 pp. | MR