Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_1_a3, author = {S. V. Polyakov and V. O. Podryga}, title = {An algorithm for calculating the movements of diatomic gases molecules}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--62}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a3/} }
TY - JOUR AU - S. V. Polyakov AU - V. O. Podryga TI - An algorithm for calculating the movements of diatomic gases molecules JO - Matematičeskoe modelirovanie PY - 2021 SP - 53 EP - 62 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a3/ LA - ru ID - MM_2021_33_1_a3 ER -
S. V. Polyakov; V. O. Podryga. An algorithm for calculating the movements of diatomic gases molecules. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a3/
[1] I.K. Kikoin (red.), Tablitsy fizicheskikh velichin. Spravochnik, Atomizdat, M., 1976, 1008 pp.
[2] E. B. Winn, “The Temperature Dependence of the Self-Diffusion Coefficients of Argon, Neon, Nitrogen, Oxygen, Carbon Dioxide, and Methane”, Phys. Rev., 80:6 (1950), 1024–1027 | DOI
[3] F. Hutchinson, “Self-Diffusion in Argon”, J. Chem. Phys., 17:11 (1949), 1081–1086 | DOI
[4] V. G. Fastovskii, A. E. Rovinskii, IU. V. Petrovskii, Inertnye gazy, Atomizdat, M., 1972, 352 pp.
[5] N. B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov I zhidkostei, izdanie vtoroe, dopolnennoe, Nauka, M., 1972, 720 pp.
[6] V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, V. A. Tsymarnyi, Termodinamicheskie svoistva azota, GSSSD. Seriia monografiia, Izd-vo standartov, M., 1977
[7] GSSSD 4-78. Azot zhidkii I gazoobraznyi. Plotnost, entalpiia, entropiia I izobarnaia teploemkost pri temperaturakh 70–1500 K i davleniiakh 0.1–100 MPa, Izd-vo standartov, M., 1978
[8] A. A. Vigasin, V. E. Liusternik, L. R. Fokin, GSSSD 49-83. Azot. Vtoroi virialnyi koeffitsient, koeffitsienty dinamicheskoi viazkosti, teploprovodnosti, samodiffuzii i chislo Prandtlia razrezhennogo gaza v diapazone temperatur 65-2500 K. Tablitsy standartnykh spravochnykh dannykh, Izd-vo standartov, M., 1984
[9] A. D. Kozlov, V. M. Kuznetsov i dr., GSSSD 89-85. Azot. Koefficienty dinamicheskoi viazkosti i teploprovodnosti pri temperaturakh 65...1000 K i davleniiakh ot sostoianiia razrezhennogo gaza do 200 MPa. Tablitsy standartnykh spravochnykh dannykh, Izd-vo standartov, M., 1986
[10] V. M. Zhdanov, M. IA. Alievskii, Protsessy perenosa i relaksatsii v molekuliarnykh gazakh, Nauka, M., 1989, 336 pp.
[11] A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii i dr., Fizicheskie velichiny. Spravochnik, eds. I.S. Grigorev, E.Z. Meilihov, Energoatomizdat, M., 1991, 1232 pp.
[12] M. S. Cramer, “Numerical estimates for the bulk viscosity of ideal gases”, Physics of fluids, 24 (2012), 066102, 23 pp. | DOI
[13] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, Wiley Sons, NY., 1964, 1249 pp.
[14] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, NY, 1987, 385 pp. | MR | Zbl
[15] A. N. Lagar'kov, V. M. Sergeev, “Molecular dynamics method in statistical physics”, Sov. Phys. Usp., 21:7 (1978), 566–588
[16] J. M. Haile, Molecular Dynamics Simulations. Elementary Methods, John Wiley Sons Inc., NY, 1992, 489 pp.
[17] D. Frenkel, B. Smit, Understanding Molecular Simulation. From Algorithm to Applications, Academic Press, NY, 2002, 638 pp.
[18] D. C. Rapaport, The Art of Molecular Dynamics Simulations, Second Edition, Cambridge University Press, 2004, 565 pp.
[19] G. E. Norman, V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI | MR | Zbl
[20] L. Verlet, “Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Phys. Rev., 159 (1967), 98–103 | DOI
[21] H. J. C. Berendsen, J. P.M. Postma, W. F. van Gunsteren et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys., 81 (1984), 3684–3690 | DOI
[22] J. E. Lennard-Jones, “Cohesion”, Proc. of the Physical Soc., 43:5 (1931), 461–482 | DOI
[23] G. Von Mie, “Zur kinetischen theorie der einatomigen korper”, Ann. Phys. Leipzig, 11:8 (1903), 657–697
[24] L. R. Fokin, A. N. Kalashnikov, “The transport properties of an N2-H2 mixture of rarefied gases in the EPIDIF database”, High Temperature, 47:5 (2009), 643–655 | DOI
[25] L. R. Fokin, A. N. Kalashnikov, A. F. Zolotukhina, “Transport properties of mixtures of rarefied gases. Hydrogen-methane system”, J. of Eng. Phys. Therm., 84:6 (2011), 1408–1420 | DOI
[26] L. R. Fokin, A. N. Kalashnikov, “Transport properties of a rarefied CH4-N2 gas mixture”, Journal of Engineering Physics and Thermophysics, 89:1 (2016), 249–259 | DOI
[27] K. Meier, A. Laesecke, S. Kabelac, “Transport coefficients of the Lennard-Jones model fluid. III. Bulk viscosity”, J. Chem. Phys., 122:1 (2005), 014513 | DOI
[28] K. Meier, Computer Simulation and Interpretation of the Transport Coefficients of the Lennard-Jones Model Fluid, PhD Thesis, Shaker Publishers, Aachen, 2002, 265 pp.
[29] D. Levesque, L. Verlet, J. Kurkijarvi, “Computer “experiments” on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point”, Phys. Rev. A, 7:5 (1973), 1690–1700 | DOI
[30] V. O. Podryga, “Opredelenie makroparametrov realnogo gaza metodami molekuliarnoi dinamiki”, Matematicheskoe modelirovanie, 27:7 (2015), 80–90 | MR | Zbl
[31] V. O. Podryga, E. V. Vikhrov, S. V. Polyakov, “Molecular dynamic calculation of macroparameters of technical gases by the example of argon, nitrogen, hydrogen, and methane”, Mathematical Models and Computer Simulations, 12:2 (2020), 210–220 | DOI | MR | Zbl
[32] E. W. Lemmon, M. O. McLinden, D. G. Friend, Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, eds. P.J. Linstrom, W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899 http://webbook.nist.gov | Zbl