Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon
Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 36-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical method for solving systems of ordinary differential equations (odes) by reducing them to Shannon equations is considered. To convert differential equations given in Cauchy normal form to Shannon equations, it is sufficient to perform a simple substitution of variables. Nonlinear ode systems are linearized. Piecewise linear approximation of the right-hand sides of the Shannon equations does not require calculations of the Jacobi matrix and provides high accuracy for solving differential equations, including stiff differential equations.
Keywords: numerical methods, ordinary differential equations, stiff differential equations
Mots-clés : Shannon equations.
@article{MM_2021_33_1_a2,
     author = {N. G. Chikurov},
     title = {Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a {Shannon}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {36--52},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/}
}
TY  - JOUR
AU  - N. G. Chikurov
TI  - Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 36
EP  - 52
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/
LA  - ru
ID  - MM_2021_33_1_a2
ER  - 
%0 Journal Article
%A N. G. Chikurov
%T Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon
%J Matematičeskoe modelirovanie
%D 2021
%P 36-52
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/
%G ru
%F MM_2021_33_1_a2
N. G. Chikurov. Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 36-52. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/

[1] N. N. Kalitkin, P. V. Koryakin, Chislennye metody, Uchebnik, v 2-h kn., v. 2, Metody matematicheskoj fiziki, Izd. tsentr «Akademiya», 2013, 304 pp.

[2] I.B. Petrov, A.I. Lobanov, Lektsii po vychislitel'noj matematike, Internet-Universitet Informatsionnyh Tekhnologij; BINOM. Laboratoriya znanij, M., 2006, 523 pp.

[3] R. P. Fedorenko, Vvedenie v vychislitel'nuyu fiziku, Izd-vo MFTI, M., 1994, 528 pp.

[4] Yu. V. Rakitskij, S. M. Ustinov, I. G. Chernoruckij, Chislennye metody resheniya zhestkih sistem, Nauka, M., 1979, 208 pp.

[5] E. Hairer, S. Norset, G. Wanner, Solving ordinary differential equations. Nonstiff problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1987 | MR | Zbl

[6] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, 2-nd Ed., Springer-Verlag, Heidelberg, 2010, 685 pp. | MR

[7] K. Dekker, J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam–New York, 1984, 334 pp. | MR | Zbl

[8] G. Hall, J.M. Watt, Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press Oxford, 1976, 336 pp. | MR | Zbl

[9] N.G. Chikurov, “Stability and accuracy of implicit methods for stiff systems of linear differential equations”, Differential Equations, 42 (2006), 1057–1067 | DOI | MR | Zbl

[10] C. Shannon, “Mathematical theory of the differential analyzer”, J. Math. and Phys., 20:4 (1941), 337 pp. | MR | Zbl

[11] A. A. Belov, N. N. Kalitkin, “Nonlinearity problem in the numerical solution of superstiff Cauchy problems”, MM, 8:6 (2016), 638–650 | MR

[12] E. K. Zholkovskij, A. A. Belov, N. N. Kalitkin, “Reshenie zhestkih zadach Koshi yavnymi skhemami s geometricheski-adaptivnym vyborom shaga”, Preprint IPM im. M.V. Keldysha, 2018, 227, 20 pp.

[13] N.G. Chikurov, “A numerical method for solving ordinary differential equations by converting them into the form of a Shannon”, MM, 13:2 (2021) | MR | Zbl