Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_1_a2, author = {N. G. Chikurov}, title = {Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a {Shannon}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {36--52}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/} }
TY - JOUR AU - N. G. Chikurov TI - Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon JO - Matematičeskoe modelirovanie PY - 2021 SP - 36 EP - 52 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/ LA - ru ID - MM_2021_33_1_a2 ER -
%0 Journal Article %A N. G. Chikurov %T Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon %J Matematičeskoe modelirovanie %D 2021 %P 36-52 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/ %G ru %F MM_2021_33_1_a2
N. G. Chikurov. Numerical solution of stiff systems of ordinary differential equations by converting them to the form of a Shannon. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 36-52. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a2/
[1] N. N. Kalitkin, P. V. Koryakin, Chislennye metody, Uchebnik, v 2-h kn., v. 2, Metody matematicheskoj fiziki, Izd. tsentr «Akademiya», 2013, 304 pp.
[2] I.B. Petrov, A.I. Lobanov, Lektsii po vychislitel'noj matematike, Internet-Universitet Informatsionnyh Tekhnologij; BINOM. Laboratoriya znanij, M., 2006, 523 pp.
[3] R. P. Fedorenko, Vvedenie v vychislitel'nuyu fiziku, Izd-vo MFTI, M., 1994, 528 pp.
[4] Yu. V. Rakitskij, S. M. Ustinov, I. G. Chernoruckij, Chislennye metody resheniya zhestkih sistem, Nauka, M., 1979, 208 pp.
[5] E. Hairer, S. Norset, G. Wanner, Solving ordinary differential equations. Nonstiff problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1987 | MR | Zbl
[6] E. Hairer, G. Wanner, Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, 2-nd Ed., Springer-Verlag, Heidelberg, 2010, 685 pp. | MR
[7] K. Dekker, J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam–New York, 1984, 334 pp. | MR | Zbl
[8] G. Hall, J.M. Watt, Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press Oxford, 1976, 336 pp. | MR | Zbl
[9] N.G. Chikurov, “Stability and accuracy of implicit methods for stiff systems of linear differential equations”, Differential Equations, 42 (2006), 1057–1067 | DOI | MR | Zbl
[10] C. Shannon, “Mathematical theory of the differential analyzer”, J. Math. and Phys., 20:4 (1941), 337 pp. | MR | Zbl
[11] A. A. Belov, N. N. Kalitkin, “Nonlinearity problem in the numerical solution of superstiff Cauchy problems”, MM, 8:6 (2016), 638–650 | MR
[12] E. K. Zholkovskij, A. A. Belov, N. N. Kalitkin, “Reshenie zhestkih zadach Koshi yavnymi skhemami s geometricheski-adaptivnym vyborom shaga”, Preprint IPM im. M.V. Keldysha, 2018, 227, 20 pp.
[13] N.G. Chikurov, “A numerical method for solving ordinary differential equations by converting them into the form of a Shannon”, MM, 13:2 (2021) | MR | Zbl