Reproduction of spatio-temporal structures of traffic flows using various ways of averaging data
Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 25-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to testing of the two-dimensional microscopic cellular automatabased traffic flow model created by the authors using test problems found in literature, as well as comparing the obtained spatio-temporal diagrams of traffic flow speeds with experimental data. Optimal methods of averaging data for a more adequate reflection of the results are investigated. The presented results confirm that the proposed CA model adequately reproduces the patterns observed on the velocity diagrams of real traffic flows, and also provides greater similarity with experimental data in comparison with other presented models.
Keywords: microscopic traffic flow model, cellular automata, data averaging
Mots-clés : spatiotemporal diagram.
@article{MM_2021_33_1_a1,
     author = {A. A. Chechina and N. G. Churbanova and M. A. Trapeznikova},
     title = {Reproduction of spatio-temporal structures of traffic flows using various ways of averaging data},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--35},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a1/}
}
TY  - JOUR
AU  - A. A. Chechina
AU  - N. G. Churbanova
AU  - M. A. Trapeznikova
TI  - Reproduction of spatio-temporal structures of traffic flows using various ways of averaging data
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 25
EP  - 35
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a1/
LA  - ru
ID  - MM_2021_33_1_a1
ER  - 
%0 Journal Article
%A A. A. Chechina
%A N. G. Churbanova
%A M. A. Trapeznikova
%T Reproduction of spatio-temporal structures of traffic flows using various ways of averaging data
%J Matematičeskoe modelirovanie
%D 2021
%P 25-35
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_1_a1/
%G ru
%F MM_2021_33_1_a1
A. A. Chechina; N. G. Churbanova; M. A. Trapeznikova. Reproduction of spatio-temporal structures of traffic flows using various ways of averaging data. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 25-35. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a1/

[1] S. Maerivoet, B. De Moor, “Cellular automata models of road traffic”, Physics Reports, 419:1 (2005), 1–64 | DOI | MR

[2] A. P. Buslaev, A. G. Tatashev, M. V. Yashina, “On cellular automata, traffic and dynamical systems in graphs”, Int. J. of Eng. Techn., 7:2.28 (2018), 351–356

[3] B. Kerner, S. Klenov, M. Schreckenberg, “Simple cellular automaton model for traffic break-down, highway capacity, and synchronized flow”, Phys. Rev., E84 (2011), 046110

[4] B. Kerner, S. Klenov, G. Hermanns, M. Schreckenberg, “Effect of driver over-acceleration on traffic breakdown in three-phase cellular automaton traffic flow models”, Physica A: Statistical Mechanics and its Applications, 392:18 (2013), 4083–4105 | DOI | MR | Zbl

[5] T. P. E. Vranken, M. Schreckenberg, “Cellular automata intersection model”, Collective Dynamics, 5 (2020), A80, 25 pp. | DOI

[6] H. T. Zhao, X. R. Liu, X. X. Chen, J. C. Lu, “Cellular automata model for traffic flow at intersections in internet of vehicles”, Physica A: Statistical Mechanics and its Applications, 494 (2018), 40–51 | DOI | MR

[7] H. T. Zhao, S. Yang, X. X. Che, “Cellular automata model for urban road traffic flow considering pedestrian crossing street”, Physica A: Statistical Mechanics and its Applications, 462 (2018), 1301–1313 | DOI

[8] X. Li, J. Q. Sun, “Effects of turning and through lane sharing on traffic performance at intersections”, Physica A: Statistical Mechanics and its Applications, 444:8 (2016), 622–640 | MR | Zbl

[9] J. Vasic, J. Heather, H. J. Ruskin, “Cellular automata simulation of traffic including cars and bicycles”, Physica A: Statistical Mechanics and its Appl., 391:8 (2012), 2720–2729 | DOI

[10] M. E. Lárraga, L. Alvarez-Icaza, “Cellular automaton model for traffic flow based on safe driving policies and human reactions”, Physica A: Statistical Mechanics and its Applications, 389:23 (2010), 5425–5438 | DOI | MR

[11] J. S.L. Combinido, M. T. Lim, “Modeling U-turn traffic flow”, Physica A: Statistical Mechanics and its Applications, 389:17 (2010), 3640–3647 | DOI

[12] H. B. Zhu, “Numerical study of urban traffic flow with dedicated bus lane and intermittent bus lane”, Physica A: Statistical Mechanics and its Appl., 389:16 (2010), 3134–3139 | DOI

[13] K. Gao, R. Jiang, B. H. Wang, Q. S. Wu, “Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model”, Physica A: Statistical Mechanics and its Applications, 388:15–16 (2009), 3233–3243 | DOI

[14] J. Von Neumann, A. Burks, Theory of self-reproducing automata, University of Illinois Press, Urbana–London, 1966, 388 pp.

[15] S. Wolfram, A new kind of science, https://www.wolframscience.com/nks/ | MR

[16] K. Nagel, M. Schreckenberg, “A cellular automaton model for freeway traffic”, J. Phys. I France, 2:12 (1992), 2221–2229 | DOI | MR

[17] M. A. Trapeznikova, A. A. Chechina, N. G. Churbanova, “Dvumernaia model' kletochnykh avtomatov dlia opisaniia dinamiki transportnykh potokov na elementakh ulichno-dorozhnoi seti”, Matematicheskoe modelirovanie, 19:9 (2017), 110–120 | MR

[18] N. G. Churbanova, A. A. Chechina, M. A. Trapeznikova, P. A. Sokolov, “Simulation of traffic flows on road segments using cellular automata theory and quasigasdynamic approach”, Mathematica Montisnigri, XLVI (2019), 72–90 | DOI

[19] B. Kerner, The physics of traffic, Springer, Berlin, 2004, 682 pp.

[20] M. Treiber, A. Kesting, Traffic flow dynamics. Data, models and simulation, Springer, Berlin–Heidelberg, 2013, 503 pp. | MR

[21] M. O. Izmailova, I. Sh. Rakhmankulov, Kategoriia «sredniaia velichina» i ee metodologicheskoe znachenie v nauchnom issledovanii, Izd. Kazanskogo Universiteta, 1982, 143 pp.