Boltzmann equation without molecular chaos hypothesis
Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A physically clear probabilistic model of a hard sphere gas is considered both with the help of the theory of random processes and in terms of the classical kinetic theory for the densities of distribution functions in the phase space: from the system of nonlinear stochastic differential equations (SDE), first the generalized, and then — random and non-random integro-differential Boltzmann equation taking into account correlations and fluctuations are derived. The main feature of the original model is the random nature of the intensity of the jump measure and its dependence on the process itself. For the sake of completeness, we briefly recall the transition to more and more rough approximations in accordance with a decrease in the dimensionlessization parameter, the Knudsen number. As a result, stochastic and nonrandom macroscopic equations are obtained, which differ from the system of Navier-Stokes equations or systems of quasi-gas dynamics. The key difference of this derivation is a more accurate averaging over the velocity due to the analytical solution of the SDE with respect to Wiener measure, in the form of which the intermediate meso-model in the phase space is presented. This approach differs significantly from the traditional one, which uses not the random process itself, but its distribution function. The emphasis is on the transparency of the assumptions when moving from one level of detail to another, rather than on numerical experiments, which contain additional approximation errors.
Keywords: Boltzmann equation, Navier-Stokes equations; random processes, SDE with respect to Bernulli and Wiener measures, particle methods.
Mots-clés : Kolmogorov-Fokker-Planck equation
@article{MM_2021_33_1_a0,
     author = {S. V. Bogomolov and T. V. Zakharova},
     title = {Boltzmann equation without molecular chaos hypothesis},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_1_a0/}
}
TY  - JOUR
AU  - S. V. Bogomolov
AU  - T. V. Zakharova
TI  - Boltzmann equation without molecular chaos hypothesis
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 24
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_1_a0/
LA  - ru
ID  - MM_2021_33_1_a0
ER  - 
%0 Journal Article
%A S. V. Bogomolov
%A T. V. Zakharova
%T Boltzmann equation without molecular chaos hypothesis
%J Matematičeskoe modelirovanie
%D 2021
%P 3-24
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_1_a0/
%G ru
%F MM_2021_33_1_a0
S. V. Bogomolov; T. V. Zakharova. Boltzmann equation without molecular chaos hypothesis. Matematičeskoe modelirovanie, Tome 33 (2021) no. 1, pp. 3-24. http://geodesic.mathdoc.fr/item/MM_2021_33_1_a0/

[1] L. Boltzmann, “Weitere Studienber das Wärme gleichgenicht unfer Gasmoläkuler”, Sitzungsberichte der Akademie der Wissenschaften, 66 (1872), 275–370

[2] A. V. Skorokhod, Stochastic Equations for Complex Systems, Kluwer Academic, Dordrecht, 1988 | MR | MR

[3] A. A. Arsen'yev, “On the approximation of the solution of the Boltzmann equation by solutions of the Ito stochastic differential equations”, USSR Comp. Math. Math. Phys., 27:2 (1987), 51–59 | DOI | MR | MR | Zbl

[4] S. V. Bogomolov, N. B. Esikova, A. E. Kuvshinnikov, “Micro-macro Fokker-Planck-Kolmogrov models for a hard sphere gas”, Math. Mod. Comp. Simul., 8:5 (2016), 533–547 | DOI | MR | Zbl

[5] S. V. Bogomolov, N. B. Esikova, A. E. Kuvshinnikov, “Meso-macro models for a hard sphere gas”, Proc. of 7th Europ. Congress on Comp. Methods in Applied Sci. Eng., ECCOMAS 2016 (Crete Island, Greece), Europ. Community on Comp. Methods in Applied Sci. (ECCOMAS), 2016, 3121–3138 | DOI

[6] B. N. Chetverushkin, A. E. Luzkiy, V. P. Osipov, “Conservation Laws and a Compact Quasi-Gasdynamic System”, Math. Mod. Comp. Simul., 12 (2020), 546–552 | DOI | MR

[7] B. N. Chetverushkin, A. V. Saveliev, V. I. Saveliev, “Kinetic Algorithms for Modeling Conductive Fluids Flow on High-Performance Computing Systems”, Dokl. Math., 100 (2019), 577–581 | DOI | Zbl

[8] V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, S. A. Zabelok, “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement”, Journal of Computational Physics, 223:2 (2007), 589–608 | DOI | Zbl

[9] V. V. Aristov, O. V. Ilyin, O. A. Rogozin, “Kinetic multiscale scheme based on the discrete-velocity and lattice-Boltzmann methods”, J. of Comp. Science, 40 (2019), 101097 | MR

[10] V. P. Osipov, B. N. Chetverushkin, “Numerical algorithms for systems with extramassive parallelism”, Comp. Math. and Math. Phys., 60 (2020), 783–794 | DOI | MR | Zbl

[11] M. B. Goncharenko, T. V. Zakharova, “Specific features of finite mixtures of normal distributions”, Moscow University Comp. Math. and Cybern., 42:3 (2018), 126–132 | DOI | MR

[12] S. V. Bogomolov, I. G. Gudich, “Diffusion model of gas in a phase space for moderate Knudsen numbers”, Math. Mod. Comp. Simul., 5:2 (2013), 130–144 | DOI | MR | Zbl

[13] S. V. Bogomolov, I. G. Gudich, “Verification of a stochastic diffusion gas model”, Math. Mod. Comp. Simul., 6:3 (2014), 305–316 | DOI | MR

[14] T. V. Zakharova, “The inverse ill-posed problem of magnetoencephalography”, Journal of Mathematical Sciences, 246:4 (2020), 587–591 | DOI | MR

[15] P. I. Karpov, T. V. Zakharova, “Magnetoencephalography inverse problem in the spheroid geometry”, Journal of Inverse and Ill-Posed Problems, 27:2 (2019), 159–169 | DOI | MR | Zbl

[16] V. Y. Korolev, “Statistical decomposition of volatility”, J. of Math. Sci., 221:4 (2017), 530–552 | DOI | MR | Zbl

[17] S. V. Bogomolov, N. B. Esikova, “Stochastic magnetic hydrodynamic hierarchy in a strong external magnetic field”, Math. Mod. Comp. Simul., 12:2 (2020), 257–270 | DOI | MR | Zbl

[18] M. H. Gorji, P. Jenny, “Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows”, Journal of Computational Physics, 287 (2015), 110–129 | DOI | MR | Zbl

[19] V. R. Jaghargh, A. Mahdavi, E. Roohi, “Shear-driven micro/nano flows simulation using Fokker Planck approach: Investigating accuracy and efficiency”, Vacuum, 172 (2020), 109065 | DOI

[20] F. Fei, H. Liu, Z. Liu, J. Zhang, “A Benchmark Study of Kinetic Models for Shock Waves”, AIAA Journal, 58:6 (2020), 2596–2608 | DOI

[21] V. K. Gupta, M. Torrilhon, “Comparison of relaxation phenomena in binary gas-mixtures of Maxwell molecules and hard spheres”, Comp. Math. with Applicat., 70:1 (2015), 73–88 | DOI | MR | Zbl

[22] S. V. Bogomolov, “An approach to deriving stochastic gas dynamics models”, Doklady Mathematics, 78 (2008), 929–931 | DOI | MR | Zbl

[23] S. V. Bogomolov, “On Fokker-Planck model for the Boltzmann collision integral at the moderate Knudsen numbers”, Math. Mod. Comp. Simul., 1:6 (2009), 739–744 | DOI | MR | Zbl

[24] S. V. Bogomolov, L. V. Dorodnitsyn, “Equations of stochastic quasi-gas dynamics: Viscous gas case”, Math. Mod. Comp. Simul., 3:4 (2011), 457–467 | DOI | MR | Zbl

[25] S. V. Bogomolov, “Stochastic quasi gas dynamics equations as a base for particle methods”, Proc. V Europ. Conf. on Comp. Fluid Dynamics, ECCOMAS CFD 2010 (Lisbon, Portugal, 2010) | MR

[26] S. Chandrasekhar, “Stochastic problems in physics and astronomy”, Rev. Modern. Phys., 15:1 (1943), 1–89 | DOI | MR | Zbl

[27] J. G. Kirkwood, “The statistical mechanical theory of transport processes”, J. Chem. Phys., 14:3 (1946), 180–201 | DOI

[28] C. Cercignani, Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations, Cambridge University Press, 2000 | MR | Zbl

[29] J. Mathiaud, L. Mieussens, A Fokker-Planck model of the Boltzmann equation with correct Prandtl number, 2015, arXiv: math.AP/1503.01246 | MR

[30] K. Morinishi, “A continuum/kinetic hybrid approach for multi-scale flow”, Proc. ECCOMAS CFD 2006 (Egmond aan Zee, Netherlands, 2006)

[31] B. Oksendal, Stochastic Differental Equations, 6th edition, Springer, Berlin, 2000, 390 pp. | MR

[32] S. S. Stepanov, Stochastic World, Springer Int., Switzerland, 2013 | MR | Zbl

[33] V. G. Zadorozhniy, V. S. Nozhkin, M. E. Semenov, I. I. Ul'shin, “Stochastic Model of Heat Transfer in the Atmospheric Surface Layer”, CM, 60:3 (2020), 459–471 | MR | Zbl