Simulation of the capacitor discharge current in the bremsstrahlung of the electron accelerator
Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

A physical experiment carried out to test the mathematical model of the bremsstrahlung generation by electrons and the formation of an electromagnetic field during its scattering is considered. During the experiment, a high-current electron accelerator irradiated the target-converter. The resulting bremsstrahlung radiation generated a flux of emission electrons and an electromagnetic field in a sealed chamber. A mathematical model of the measuring circuit used for the experimental determination of the electric current in the chamber was developed. The results of physical and simulating computational experiments coincided with satisfactory accuracy. It has been established that necessary conditions for confirming the model are taking into account the measuring equipment in a computational experiment and using directly measured values for comparison.
Keywords: mathematical model, accelerator, bremsstrahlung, electron emission, electromagnetic field, experiment, absorbed dose, electric current.
Mots-clés : anode, calculation
@article{MM_2021_33_12_a2,
     author = {F. N. Voronin and E. D. Kazakov and O. S. Kosarev and M. B. Markov and I. A. Tarakanov},
     title = {Simulation of the capacitor discharge current in the bremsstrahlung of the electron accelerator},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {33},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_12_a2/}
}
TY  - JOUR
AU  - F. N. Voronin
AU  - E. D. Kazakov
AU  - O. S. Kosarev
AU  - M. B. Markov
AU  - I. A. Tarakanov
TI  - Simulation of the capacitor discharge current in the bremsstrahlung of the electron accelerator
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 33
EP  - 48
VL  - 33
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_12_a2/
LA  - ru
ID  - MM_2021_33_12_a2
ER  - 
%0 Journal Article
%A F. N. Voronin
%A E. D. Kazakov
%A O. S. Kosarev
%A M. B. Markov
%A I. A. Tarakanov
%T Simulation of the capacitor discharge current in the bremsstrahlung of the electron accelerator
%J Matematičeskoe modelirovanie
%D 2021
%P 33-48
%V 33
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_12_a2/
%G ru
%F MM_2021_33_12_a2
F. N. Voronin; E. D. Kazakov; O. S. Kosarev; M. B. Markov; I. A. Tarakanov. Simulation of the capacitor discharge current in the bremsstrahlung of the electron accelerator. Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_2021_33_12_a2/

[1] S. N. Vernov, A. E. Chudakov, “Terrestrial corpuscular and cosmic rays”, Space Research, ed. H. Kallmann Bijl, Amsterdam, 1960, 751–796

[2] H. Davies, H. A. Bethe, L. C. Maximon, “Theory of bremsstrahlung and pair production. Integral cross section for pair production”, Phys. Rev., 93 (1954), 788–795 | DOI

[3] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, v. 2, 4th Edition, Butterworth-Heinemann, 1975

[4] W. Heitler, The Quantum Theory of Radiation, Clarendon Press, Oxford, 1954 | Zbl

[5] A. V. Berezin, A. S. Vorontsov, M. E. Zhukovskiy, M. B. Markov, S. V. Parot'kin, “Particle method for electrons in a scattering medium”, Comp. Math. Math. Phys., 55:9 (2015), 1534–1546 | DOI | Zbl

[6] Kenneth M. Case, Paul F. Zweifel, Linear Transport Theory, Addison-Wesley Publishing Company, 1967 | Zbl

[7] H. Alfven, C. Falthammar, Cosmical Electrodynamics. Fundamental Principles, Clarendon Press, Oxford, 1963 | Zbl

[8] M. B. Markov, S. V. Parot'kin, “The kinetic model of radiation-induced gas conductivity”, Mathematical Models and Computer Simulations, 3:6 (2011), 712–722 | DOI | Zbl

[9] D. N. Sadovnichij, A. P. Tiutnev, S. A. Khatipov, Iu. A. Militsin, “Radiatsionnaia elektroprovodnost rezin i metod ee prognozirovaniia”, Khimiia vysokikh energii, 32:1 (1998), 7–13

[10] A. E.S. Green, L. R. Peterson, “Energy loss function for electrons and protons in planetary gas”, J. Geoph. Res., 78:1 (1968), 233–240 | DOI

[11] N. F. Mott, H. S.W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965

[12] M. Gryzinski, “Classic Theory of Electronic and Ionic Inelastic Collisions”, Phys. Rev., 115:2 (1959), 374–383 | DOI | Zbl

[13] Yong-Ki Kim, M. E. Rudd, “Theory for Ionization of Molecules by Electrons”, Phys. Rev., 50 (1994), 3954–3967 | DOI

[14] G. I. Dolgachev, E. D. Kazakov, Y. G. Kalinin, D. D. Maslennikov, A. A. Shvedov, “RS-20MR High-Current Relativistic Electron Beam Generator Based on a Plasma Opening Switch and Its Applications”, Plasma Physics Reports, 45:4 (2019), 315–324 | DOI

[15] F. N. Voronin, A. S. Duhanin, E. D. Kazakov, O. S. Kosarev, M. B. Markov, YU. V. Pomazan, I. A. Tarakanov, “Modelirovanie perenosa izlucheniia v uskoritele elektronov”, Keldysh Institute preprints, 2021, 047, 14 pp.