Two dimensional model for calculation of the working process of spark ignited engine
Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two dimensional calculation model of the working process — program «PAS» (Preliminary Analysis of Simulation) — is developed for preliminary planning of three dimensional numerical calculations of the working process in spark ignited engines. The model is based on solution of partial differential equation of energy conservation on base of control volume method with explicit control of the flame front. A new approach for modeling of flame propagation in the internal combustion engine is suggested. The approach represents a combination of control volume method and definition of flame front velocity on base of experimental data (with consideration of phase of flame kernel evolution). In this case it is not necessary to solve the impulse and species transport equations to define a current position the flame front. Thus the model has such advantages as short time of calculation and good predictive ability. Additionally the program can be applied for preliminary validation of three dimensional calculations, then experimental data is not available, and also for obtaining of the heat release curve for implementation in zerodimensional (thermodynamic) models of the working process.
Keywords: control volume method, temperature field.
Mots-clés : flame propagation, internal combustion engine
@article{MM_2021_33_12_a1,
     author = {S. S. Sergeev},
     title = {Two dimensional model for calculation of the working process of spark ignited engine},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {33},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_12_a1/}
}
TY  - JOUR
AU  - S. S. Sergeev
TI  - Two dimensional model for calculation of the working process of spark ignited engine
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 21
EP  - 32
VL  - 33
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_12_a1/
LA  - ru
ID  - MM_2021_33_12_a1
ER  - 
%0 Journal Article
%A S. S. Sergeev
%T Two dimensional model for calculation of the working process of spark ignited engine
%J Matematičeskoe modelirovanie
%D 2021
%P 21-32
%V 33
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_12_a1/
%G ru
%F MM_2021_33_12_a1
S. S. Sergeev. Two dimensional model for calculation of the working process of spark ignited engine. Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 21-32. http://geodesic.mathdoc.fr/item/MM_2021_33_12_a1/

[1] G. Merker, C. Schwarz (Hrsg), Grundlagen Verbrennungsmotoren. Simulation der Gemischbildung, Verbrennung, Schadstoffbildung und Aufladung. Praxis, Vieweg+Teubner Verlag, Wiesbaden, 2012, 795 pp.

[2] R. Pischinger, M. Klell, T. Sams, Thermodynamik der Verbrennungskraftmaschine. Der Fahrzeugantrieb, Springer-Verlag, Wien-New York, 2002, 475 pp.

[3] R. Basshuesen, F. Schäfer, Handbuch. Verbrennungsmotor, Vieweg Sohn Verlag, Wiesbaden, 2007, 1032 pp.

[4] F. Perini, E. Mattarelli, F. Paltrinieri, “A quasi-dimensional combustion model for performance and emissions of SI engines running on hydrogen-methane blends”, International Journal of Hydrogen Energy, 35 (2010), 4687–4701 | DOI

[5] Z. Li, R. Chen, “A zero-dimensional combustion model with reduced kinetics for SI engine knock simulation”, Combustion Science and Technology, 181:6 (2009), 828–852 | DOI

[6] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publi. Corp., NY, 1980 | Zbl

[7] B. Enaux, V. Granet, O. Vermorel, C. Lacour, C. Pera, C. Angelberger, T. Poinsot paper LES study of cycle-to-cycle variations in a spark ignition engine, Proc. of the Combustion Institute, 33 (2011), 3115–3122 | DOI

[8] A. S. Sokolik, Samovosplamenenie, plamia i detonatsia v gazakh, AN SSSR, M., 1960, 427 pp.

[9] Ya. B. Zeldovich, G. I. Barenblat, V. B. Librovich, G. M. Makhviladze, The mathematical model of combustion and explosion, Plenum, New York, 1985, 597 pp.

[10] S. M. Frolov, V. S. Ivanov, B. Basara, M. Suffa, “Numerical simulation of flame propagation and localized preflame autoignition in enclosures”, Journal of Loss Prevention in the Process Industries, 26 (2013), 302–309 | DOI

[11] C. Huang, E. Yasari, L. C.R. Johansen, S. Hemdal, A. N. Lipatnikov, “Application of flame speed closure model to RANS simulations of stratified turbulent combustion in a gasoline direct-injection spark-ignition engine”, Combustion Sci. Technology, 188:1 (2016), 98–131 | DOI

[12] G. Woschni, A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE technical paper No 670931, 1967

[13] R. Z. Kavtaradze, Lokalnyi teploobmen v porshnevykh dvigateliakh, MGTU im. N.E. Baumana, M., 2007, 472 pp.

[14] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flow”, Computer methods in applied mechanics and engineering, 3 (1974), 269–289 | DOI | Zbl

[15] R. C. Reid, J. M. Prausnitz, T. K. Sherwood, The properties of gases and liquids, McGrawHill, NY, 1977, 703 pp.

[16] S. V. Patankar, Computation of Conduction and Duct Flow Heat Transfer, Innovative Research Inc., USA, 1991, 349 pp.

[17] http://numpy.scipy.org

[18] B. J. McBride, M. J. Zehe, S. Gordon, NASA Glenn Coefficients for Calculating Thermo-dynamic Properties of Individual Species, NASA TP-211556, 2002

[19] N. Chindapraser, Thermodynamic based prediction Model for NOx and CO Emissions from a Gasoline Direct Injection Engine, Dissertation, Universität Rostock, 2007, 123 pp.

[20] A. Kaden, Dr. R. Klumpp, C. Enderle, “Analyse der Restgasverträglichkeit beim Ottomotor Ergänzung der Verbrennungsdiagnostik durch die 3D-Motorprozessberechnung”, 6 Internationales Symposium für Verbrennungsdiagnostik, 2002, 57–67