Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_12_a1, author = {S. S. Sergeev}, title = {Two dimensional model for calculation of the working process of spark ignited engine}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--32}, publisher = {mathdoc}, volume = {33}, number = {12}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_12_a1/} }
S. S. Sergeev. Two dimensional model for calculation of the working process of spark ignited engine. Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 21-32. http://geodesic.mathdoc.fr/item/MM_2021_33_12_a1/
[1] G. Merker, C. Schwarz (Hrsg), Grundlagen Verbrennungsmotoren. Simulation der Gemischbildung, Verbrennung, Schadstoffbildung und Aufladung. Praxis, Vieweg+Teubner Verlag, Wiesbaden, 2012, 795 pp.
[2] R. Pischinger, M. Klell, T. Sams, Thermodynamik der Verbrennungskraftmaschine. Der Fahrzeugantrieb, Springer-Verlag, Wien-New York, 2002, 475 pp.
[3] R. Basshuesen, F. Schäfer, Handbuch. Verbrennungsmotor, Vieweg Sohn Verlag, Wiesbaden, 2007, 1032 pp.
[4] F. Perini, E. Mattarelli, F. Paltrinieri, “A quasi-dimensional combustion model for performance and emissions of SI engines running on hydrogen-methane blends”, International Journal of Hydrogen Energy, 35 (2010), 4687–4701 | DOI
[5] Z. Li, R. Chen, “A zero-dimensional combustion model with reduced kinetics for SI engine knock simulation”, Combustion Science and Technology, 181:6 (2009), 828–852 | DOI
[6] S. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publi. Corp., NY, 1980 | Zbl
[7] B. Enaux, V. Granet, O. Vermorel, C. Lacour, C. Pera, C. Angelberger, T. Poinsot paper LES study of cycle-to-cycle variations in a spark ignition engine, Proc. of the Combustion Institute, 33 (2011), 3115–3122 | DOI
[8] A. S. Sokolik, Samovosplamenenie, plamia i detonatsia v gazakh, AN SSSR, M., 1960, 427 pp.
[9] Ya. B. Zeldovich, G. I. Barenblat, V. B. Librovich, G. M. Makhviladze, The mathematical model of combustion and explosion, Plenum, New York, 1985, 597 pp.
[10] S. M. Frolov, V. S. Ivanov, B. Basara, M. Suffa, “Numerical simulation of flame propagation and localized preflame autoignition in enclosures”, Journal of Loss Prevention in the Process Industries, 26 (2013), 302–309 | DOI
[11] C. Huang, E. Yasari, L. C.R. Johansen, S. Hemdal, A. N. Lipatnikov, “Application of flame speed closure model to RANS simulations of stratified turbulent combustion in a gasoline direct-injection spark-ignition engine”, Combustion Sci. Technology, 188:1 (2016), 98–131 | DOI
[12] G. Woschni, A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE technical paper No 670931, 1967
[13] R. Z. Kavtaradze, Lokalnyi teploobmen v porshnevykh dvigateliakh, MGTU im. N.E. Baumana, M., 2007, 472 pp.
[14] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flow”, Computer methods in applied mechanics and engineering, 3 (1974), 269–289 | DOI | Zbl
[15] R. C. Reid, J. M. Prausnitz, T. K. Sherwood, The properties of gases and liquids, McGrawHill, NY, 1977, 703 pp.
[16] S. V. Patankar, Computation of Conduction and Duct Flow Heat Transfer, Innovative Research Inc., USA, 1991, 349 pp.
[18] B. J. McBride, M. J. Zehe, S. Gordon, NASA Glenn Coefficients for Calculating Thermo-dynamic Properties of Individual Species, NASA TP-211556, 2002
[19] N. Chindapraser, Thermodynamic based prediction Model for NOx and CO Emissions from a Gasoline Direct Injection Engine, Dissertation, Universität Rostock, 2007, 123 pp.
[20] A. Kaden, Dr. R. Klumpp, C. Enderle, “Analyse der Restgasverträglichkeit beim Ottomotor Ergänzung der Verbrennungsdiagnostik durch die 3D-Motorprozessberechnung”, 6 Internationales Symposium für Verbrennungsdiagnostik, 2002, 57–67