About the quasihydrodynamic approach for simulation of internal wave attractors
Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the example of the problem of modeling wave attractors in a stratified fluid, the advantages of the quasi-hydrodynamic (QHD) algorithm over the classical algorithm for splitting operators PISO are demonstrated. The PISO algorithm for solving the NavierStokes equations by the finite volume method and its specific implementation based on the OpenFOAM open-source software package is considered. It is shown that the use of the PISO algorithm does not reproduce the dynamics of multiple reflection and focusing of internal waves in a stratified fluid during interaction with the boundaries of the computational domain. This algorithm is compared with the QHDFoam algorithm for solving the Navier-Stokes equation based on regularized hydrodynamic equations. The application of the QHDFoam algorithm implemented in the OpenFOAM package gives results close to the data obtained using the high-order spectral-element method, which is considered a reference.
Keywords: wave attractors, internal waves, QHDFoam, OpenFOAM, Nek5000.
@article{MM_2021_33_12_a0,
     author = {D. A. Ryazanov},
     title = {About the quasihydrodynamic approach for simulation of internal wave attractors},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {33},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_12_a0/}
}
TY  - JOUR
AU  - D. A. Ryazanov
TI  - About the quasihydrodynamic approach for simulation of internal wave attractors
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 20
VL  - 33
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_12_a0/
LA  - ru
ID  - MM_2021_33_12_a0
ER  - 
%0 Journal Article
%A D. A. Ryazanov
%T About the quasihydrodynamic approach for simulation of internal wave attractors
%J Matematičeskoe modelirovanie
%D 2021
%P 3-20
%V 33
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_12_a0/
%G ru
%F MM_2021_33_12_a0
D. A. Ryazanov. About the quasihydrodynamic approach for simulation of internal wave attractors. Matematičeskoe modelirovanie, Tome 33 (2021) no. 12, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2021_33_12_a0/

[1] R. Issa, A. Gosman, A. Watkins, “The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme”, Journal of Computational Physics, 62:1 (1986), 66–82 | DOI | Zbl

[2] S. Patankar, D. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and Mass Transfer, 15:10 (1972), 1787–1806 | DOI | Zbl

[3] T. G. Elizarova, Quasi-gas dynamic equations, Springer-Verlag, Berlin, 2009 | Zbl

[4] Yu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITS «Reguliarnaia I khaoticheskaia dinamika», M.–Izhevsk, 2009

[5] T. G. Elizarova, Y. V. Sheretov, “Theoretical and numerical analysis of quasi-gasdynamic and quasi-hydrodynamic equations”, J. Comp. Math. Math. Phys., 41:2 (2001), 219–234 | Zbl

[6] OpenFOAM oficial website, https://www.openfoam.com/

[7] J. H. Ferziger, M. Perić, R. L. Street, Computational methods for fluid dynamics, v. 3, Springer, 2002 | Zbl

[8] M. V. Kraposhin, E. V. Smirnova, T. G. Elizarova, M. A. Istomina, “Development of a new OpenFOAM solver using regularized gas dynamic equations”, Computers Fluids, 166 (2018), 163–175 | DOI | Zbl

[9] P. F. Fischer, J. W. Lottes, Nek5000 Web page, , 2020 https://nek5000.mcs.anl.gov/

[10] D. E. Mowbray, B. S.H. Rarity, “A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified liquid”, J. Fluid Mech., 1967, 1–16 | DOI

[11] J. S. Turner, Buoyancy effects in fluids, Cambridge University Press, 1973 | Zbl

[12] L. R.M. Maas, F. P.A. Lam, “Geometric focusing of internal waves”, J. of Fluid Mechanics, 300 (1995), 1–41 | DOI | Zbl

[13] L. R. M. Maas et al, “Observation of an internal wave attractor in a confined, stably stratified fluid”, Nature, 388:6642 (1997), 557–561 | DOI

[14] L. Maas, “Wave attractors: Linear yet nonlinear”, Intl J. Bifurcation Chaos, 2005, 2757–2782 | DOI | Zbl

[15] C. Brouzet et al, “Direct numerical simulation of internal gravity wave attractor in trapezoidal domain with oscillating vertical wall”, Proc. of the Institute for System Programming of RAS, 26:5 (2014), 117–142 | DOI

[16] Y. V. Sheretov, “Ob odnoi novoi matematicheskoi modeli v gidrodinamike”, Primenenie funktsionalnogo analiza v teorii priblezhenii, Tverskoi gosudarstvennii universitet, Tver, 1996, 124–134

[17] D. B. Gurov, T. G. Elizarova, Y. V. Sheretov, “Chislennoe modelirovanie techenii zhidkosti v kaverne na osnove kvazigidrodinamicheskikh uravnenii”, Matematicheskoe modelirovanie, 8:7 (1996), 33–44 | Zbl

[18] T. G. Elizarova, I. S. Kalachinskaya, A. V. Klyuchnikova, Yu. V. Sheretov, “Application of Quasi-Hydrodynamic Equations in the Modeling of Low-Prandtl Thermal Convection”, Comp. Math. Math. Phys., 38:10 (1998), 1662–1671 | Zbl

[19] Y. V. Sheretov, Regularizovannye uravneniia gidrodynamiki, Tverskoi gosunivers., Tver, 2016

[20] Sheretov Y. V., “On common exact solutions of Navier-Stokes and quasi-hydrodynamic systems for nonstationary flows”, Herald of Tver State University. Series: Applied Math., 2017, no. 3, 13–25 | DOI

[21] E. Erturk, B. Dursun, “Numerical solutions of 2-d steady incompressible flow in a driven skewed cavity”, ZAMM, 87:5 (2007), 377–392 | DOI | Zbl