Multi-sector bounded-neighbourhood model: agent segregation and optimization of environment characteristics
Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 95-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article presents an approach to studying the effects of segregation using the developed multi-sector bounded-neighbourhood model. A model of the evolutionary dynamics of a community consisting of a local (natives) and external population (migrants) interacting in an artificial socio-economic system is proposed, in which the key sectors of the economy are highlighted: mining of raw materials (the primary sector, which attracts mainly migrants), the manufacturing sector (the secondary sector, which attracts mainly indigenous people), and the sphere of low-tech and high-tech services (the tertiary and quaternary sectors of the economy, which attract migrants and indigenous people, respectively). Formation of jobs in these sectors of the economy is carried out centrally using the previously proposed fuzzy clustering algorithm. Simulation experiments were carried out and the effects of segregation were investigated due to the desire of agents to search for the most preferable jobs in a bounded-neighbourhood under various scenario conditions. Using the proposed genetic algorithm, an important optimization problem was solved to maximize the GDP growth rate and minimize the level of population segregation.
Keywords: bounded-neighbourhood models, agent-based modelling of migration and socioeconomic processes, models of tolerant threshold behaviour, segregation effects, agent clustering, genetic algorithm.
@article{MM_2021_33_11_a5,
     author = {Andranik Akopov and Leva Beklaryan and Armen Beklaryan},
     title = {Multi-sector bounded-neighbourhood model: agent segregation and optimization of environment characteristics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--114},
     publisher = {mathdoc},
     volume = {33},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a5/}
}
TY  - JOUR
AU  - Andranik Akopov
AU  - Leva Beklaryan
AU  - Armen Beklaryan
TI  - Multi-sector bounded-neighbourhood model: agent segregation and optimization of environment characteristics
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 95
EP  - 114
VL  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a5/
LA  - ru
ID  - MM_2021_33_11_a5
ER  - 
%0 Journal Article
%A Andranik Akopov
%A Leva Beklaryan
%A Armen Beklaryan
%T Multi-sector bounded-neighbourhood model: agent segregation and optimization of environment characteristics
%J Matematičeskoe modelirovanie
%D 2021
%P 95-114
%V 33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a5/
%G ru
%F MM_2021_33_11_a5
Andranik Akopov; Leva Beklaryan; Armen Beklaryan. Multi-sector bounded-neighbourhood model: agent segregation and optimization of environment characteristics. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 95-114. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a5/

[1] A. S. Akopov, A. L. Beklarian, “Klasterizatsiia agentov v modeli ogranichennogo sosedstva”, Iskusstvennye obshchestva, 15:3 (2020) (data obrashch.: 26.08.21) | DOI

[2] A. S. Akopov, A. L. Beklarian, L. A. Beklarian, F. A. Belousov, N. K. Khachatrian, “Klasterizatsiia agentov v modeli segregatsii naseleniia”, Iskusstvennye obshchestva, 15:4 (2020) (data obrashch.: 26.08.2021) | DOI

[3] V. V. Breer, “Modeli tolerantnogo porogovogo povedeniia (ot T. Shellinga k M. Granovetteru)”, Problemy upravleniia, 2016, no. 1, 11–20

[4] V. L. Makarov, A. R. Bakhtizin, G. L. Beklarian, A. S. Akopov, E. A. Rovenskaia, N. V. Strel'kovskii, “Agentnoe modelirovanie populiatsionnoi dinamiki dvukh vzaimodeistvuiushchikh soobshchestv: migrantov i korennykh zhitelei”, Ekonomika i matematicheskie metody, 56:2 (2020), 5–19

[5] T. C. Schelling, “Dynamic models of segregation”, The Journal of Mathematical Sociology, 1:2 (1971), 143–186 | DOI | Zbl

[6] M. Granovetter, “Threshold Models of Collective Behavior”, The American Journal of Sociology, 83:6 (1978), 1420–1443 | DOI

[7] A. L. Beklaryan, A. S. Akopov, “Simulation of Agent-rescuer Behaviour in Emergency Based on Modified Fuzzy Clustering”, Proc. of 2016 Inter. Conf. on Autonomous Agents Multiagent Systems (Richland, 2016), 275–1276

[8] J. C. Bezdek, “Cluster validity with fuzzy sets”, J. of Cybernetics, 3:3 (1974), 58–73 | DOI

[9] O. Duncan, B. Duncan, “A methodological analysis of segregation indexes”, American sociological review, 20 (1955), 210–217 | DOI

[10] A. G. B. Fisher, The Clash of Progress and Security, Macmillan, London, 1935

[11] C. Clark, The Conditions of Economic Progress, Macmillan, London, 1940

[12] W. Jager, R. Paolillo, “Simulating Acculturation Dynamics Between Migrants and Locals in Relation to Network Formation”, Social Science Comp. Review, 38:4 (2019), 365–386

[13] M. Civico, “The dynamics of language minorities: Evidence from an agent-based model of language contact”, J. of Artificial Societies and Social Simulation, 22:3–4 (2019) https://www.jasss.org/22/4/3.html

[14] Z. Fu, L. Hao, “Agent-based modeling of China's rural-urban migration and social network structure”, Physica A: Statistical Mechanics and its Applications, 490 (2018), 1061–1075 | DOI

[15] M. Simon, C. Schwartz, D. Hudson, S. D. Johnson, “A data-driven computational model on the effects of immigration policies”, Proceedings of the National Academy of Sciences of the United States of America, 115:34 (2018), E7914–E7923 | DOI

[16] F. Herrera, M. Lozano, “Gradual distributed real-coded genetic algorithms”, IEEE Transactions on Evolutionary computation, 4:1 (2000), 43–63 | DOI

[17] G. L. Beklaryan, A. S. Akopov, N. K. Khachatryan, “Optimisation of System Dynamics models using a Real-Coded Genetic Algorithm with fuzzy control”, Cybernetics and Information Technologies, 19:2 (2019), 87–103 | DOI

[18] A. S. Akopov, L. A. Beklaryan, A. L. Beklaryan, “Cluster-based optimization of an evacuation process using a parallel bi-objective real-coded genetic algorithm”, Cybernetics and Information Technologies, 20:3 (2020), 45–63 | DOI

[19] E. Zitzler, M. Laumanns, L. Thiele, “SPEA2: improving the Strength Pareto Evolutionary Algorithm”, TIK-report, 103 (2001)