Restore relative spaceship trajectory during approacing to the space station using mathematic model
Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 77-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of reconstructing the trajectory of a spacecraft when docked to an orbital station in the associated coordinate system of the orbital station. The trajectory of the spacecraft movement relative to the orbital station is restored by reconstructing the trajectory of the spacecraft and the orbital station in the Greenwich coordinate system using parametric mathematical models. The movement of the orbital station is considered unperturbed, the movement of the spacecraft is corrected using a series of impulses. The paper proposes an original parametric mathematical model of the perturbed motion of a spacecraft, in which the perturbing acceleration of an impulse is specified by a piecewise constant vector function, the impulse values are refined parameters. Refinement of the parameters of mathematical models is carried out according to the data of autonomous navigation systems installed on the spacecraft and orbital station, using the least squares method. The proposed algorithm and the developed software were used to analyze the rendezvous trajectories at seven docks of the Soyuz and Progress spacecraft with the International Space Station, the paper presents the reconstructed trajectories and estimates the error.
Keywords: docking, rendezvous trajectory, mathematical modeling, spacecraft, forecast, processing of telemetric information, autonomous navigation system.
Mots-clés : International Space Station
@article{MM_2021_33_11_a4,
     author = {Vas. V. Sazonov},
     title = {Restore relative spaceship trajectory during approacing to the space station using mathematic model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--94},
     publisher = {mathdoc},
     volume = {33},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/}
}
TY  - JOUR
AU  - Vas. V. Sazonov
TI  - Restore relative spaceship trajectory during approacing to the space station using mathematic model
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 77
EP  - 94
VL  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/
LA  - ru
ID  - MM_2021_33_11_a4
ER  - 
%0 Journal Article
%A Vas. V. Sazonov
%T Restore relative spaceship trajectory during approacing to the space station using mathematic model
%J Matematičeskoe modelirovanie
%D 2021
%P 77-94
%V 33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/
%G ru
%F MM_2021_33_11_a4
Vas. V. Sazonov. Restore relative spaceship trajectory during approacing to the space station using mathematic model. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 77-94. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/

[1] J. L. Gonnaud, V. Pascal, “ATV Guidance, Navigation and Control for Rendezvous with ISS”, Spacecraft Guidance, Navigation and Control Systems, Proc. of 4th ESA International Conference, 1999, 501–510

[2] T.J. Martín-Mur, J.M. Dow, C. Garcia Maritinez, “Absolute relative navigation of spacecraft using GPS: The ATV rendezvous pre-development flight demonstrations”, Space Flight Dynamics, Proc. of 12th Inter. Symp. (Darmstadt, Germany, 1997), 93–96

[3] S. A. Lantto, J. N. Gross, “Precise Orbit Determination Using Duty Cycled GPS Observations”, 2018 AIAA Modeling and Simulation Technologies Conference, AIAA 2018-1393 | DOI

[4] E. A. Mikrin, M. V. Mikhailov, Navigatsiia kosmicheskikh apparatov po izmereniiam ot globalnykh sputnikovykh navigatsionnykh sistem, Izd. MGTU im. N.E. Baumana, M., 2017, 344 pp.

[5] E. M. Wesam, “Kalman filter implementation for small satellites”, IOP Conference Series: Materials Science and Engineering, 211 (2017) | DOI

[6] Sazonov Vas. V., “Comparison of two models simulating the motion of aerodynamic drag used for predicting the ISS's orbital motion”, Math. Mod. Comp. Simul., 13:3 (2021), 502–511 | DOI | Zbl

[7] A. F. Bragazin, Upravleniie sblizheniem kosmicheskikh apparatov (navigtsiia, navedeniie, korrektsiia dvizheniia), RKK “Energiia”, Korolev, 2018, 472 pp.

[8] EGM96, https://cddis.nasa.gov/926/egm96/egm96.html

[9] GOST R 25645.166-2004. Atmosfera Zemli verkhniaia. Model plotnosti dlia ballisticheskogo obespecheniia poletov iskusstvennykh sputnikov Zemli, IPK Izd-vo standartov, M., 2004, 24 pp.

[10] Celestrak, http://celestrak.com/SpaceData/

[11] O. Montenbruck, T. Pfleger, Astronomy on the Personal Computer, Springer, Berlin, 1997, 255 pp.

[12] I. K. Bazhinov, V. P. Gavrilov, V. D. Iastrebov i dr., Navigatsionnoe obespechenie poleta orbitalnogo kompleksa “Saliut-6” – “Soiuz” – “Progress”, Nauka, M., 1985

[13] E. Hairer, S. P. Norset, A. G. Wanner, Solving ordinary Differential Equations, v. I, Nonstiff Problems, 2nd ed, Springer-Verlag, 1993 | Zbl

[14] Gill P., Murray W., Wright M., Practical optimization, Academic Press, 1981 | Zbl

[15] Transportnyi pilotiruemyi korabl “Soyuz MS”, Ofitsialnyi sait PAO “RKK Energiya” im. S.P. Koroleva, https://www.energia.ru/ru/iss/soyuz-ms/soyuz-ms.html