Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_11_a4, author = {Vas. V. Sazonov}, title = {Restore relative spaceship trajectory during approacing to the space station using mathematic model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {77--94}, publisher = {mathdoc}, volume = {33}, number = {11}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/} }
TY - JOUR AU - Vas. V. Sazonov TI - Restore relative spaceship trajectory during approacing to the space station using mathematic model JO - Matematičeskoe modelirovanie PY - 2021 SP - 77 EP - 94 VL - 33 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/ LA - ru ID - MM_2021_33_11_a4 ER -
Vas. V. Sazonov. Restore relative spaceship trajectory during approacing to the space station using mathematic model. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 77-94. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a4/
[1] J. L. Gonnaud, V. Pascal, “ATV Guidance, Navigation and Control for Rendezvous with ISS”, Spacecraft Guidance, Navigation and Control Systems, Proc. of 4th ESA International Conference, 1999, 501–510
[2] T.J. Martín-Mur, J.M. Dow, C. Garcia Maritinez, “Absolute relative navigation of spacecraft using GPS: The ATV rendezvous pre-development flight demonstrations”, Space Flight Dynamics, Proc. of 12th Inter. Symp. (Darmstadt, Germany, 1997), 93–96
[3] S. A. Lantto, J. N. Gross, “Precise Orbit Determination Using Duty Cycled GPS Observations”, 2018 AIAA Modeling and Simulation Technologies Conference, AIAA 2018-1393 | DOI
[4] E. A. Mikrin, M. V. Mikhailov, Navigatsiia kosmicheskikh apparatov po izmereniiam ot globalnykh sputnikovykh navigatsionnykh sistem, Izd. MGTU im. N.E. Baumana, M., 2017, 344 pp.
[5] E. M. Wesam, “Kalman filter implementation for small satellites”, IOP Conference Series: Materials Science and Engineering, 211 (2017) | DOI
[6] Sazonov Vas. V., “Comparison of two models simulating the motion of aerodynamic drag used for predicting the ISS's orbital motion”, Math. Mod. Comp. Simul., 13:3 (2021), 502–511 | DOI | Zbl
[7] A. F. Bragazin, Upravleniie sblizheniem kosmicheskikh apparatov (navigtsiia, navedeniie, korrektsiia dvizheniia), RKK “Energiia”, Korolev, 2018, 472 pp.
[8] EGM96, https://cddis.nasa.gov/926/egm96/egm96.html
[9] GOST R 25645.166-2004. Atmosfera Zemli verkhniaia. Model plotnosti dlia ballisticheskogo obespecheniia poletov iskusstvennykh sputnikov Zemli, IPK Izd-vo standartov, M., 2004, 24 pp.
[10] Celestrak, http://celestrak.com/SpaceData/
[11] O. Montenbruck, T. Pfleger, Astronomy on the Personal Computer, Springer, Berlin, 1997, 255 pp.
[12] I. K. Bazhinov, V. P. Gavrilov, V. D. Iastrebov i dr., Navigatsionnoe obespechenie poleta orbitalnogo kompleksa “Saliut-6” – “Soiuz” – “Progress”, Nauka, M., 1985
[13] E. Hairer, S. P. Norset, A. G. Wanner, Solving ordinary Differential Equations, v. I, Nonstiff Problems, 2nd ed, Springer-Verlag, 1993 | Zbl
[14] Gill P., Murray W., Wright M., Practical optimization, Academic Press, 1981 | Zbl
[15] Transportnyi pilotiruemyi korabl “Soyuz MS”, Ofitsialnyi sait PAO “RKK Energiya” im. S.P. Koroleva, https://www.energia.ru/ru/iss/soyuz-ms/soyuz-ms.html