Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_11_a2, author = {T. R. Amanbaev and S. J. Antony}, title = {Development of mathematical epidemic models taking into account the effects of isolating individuals in a population}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {39--60}, publisher = {mathdoc}, volume = {33}, number = {11}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a2/} }
TY - JOUR AU - T. R. Amanbaev AU - S. J. Antony TI - Development of mathematical epidemic models taking into account the effects of isolating individuals in a population JO - Matematičeskoe modelirovanie PY - 2021 SP - 39 EP - 60 VL - 33 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a2/ LA - ru ID - MM_2021_33_11_a2 ER -
%0 Journal Article %A T. R. Amanbaev %A S. J. Antony %T Development of mathematical epidemic models taking into account the effects of isolating individuals in a population %J Matematičeskoe modelirovanie %D 2021 %P 39-60 %V 33 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a2/ %G ru %F MM_2021_33_11_a2
T. R. Amanbaev; S. J. Antony. Development of mathematical epidemic models taking into account the effects of isolating individuals in a population. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 39-60. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a2/
[1] V. Volterra, “Fluctuations in the abundance of a species considered mathematically”, Nature, 118 (1926), 558–560 | DOI | Zbl
[2] A. J. Lotka, Elements of Physical Biology, Nature, 116, 1925, 461 pp. | DOI
[3] H. Weiss, “The SIR model and the foundations of public health”, Materials Mathematics, 3 (2013), 17 pp.
[4] R. M. Anderson, “Discussion: the Kermack-McKendrick epidemic threshold theorem”, Bulletin of Mathematical Biology, 53:1 (1991), 1–12 | DOI
[5] O. N. Bjornstad, K. Shea, M. Krzywinski, N. Altman, “Modeling infectious epidemics”, Nature methods, 17 (2020), 455–456 | DOI
[6] M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, T. K. Kar, “A model based study on the dynamics of COVID-19: Prediction and control”, Chaos, Solitons and Fractals, 136 (2020), 109889 | DOI
[7] M. J. Keeling, P. Rohani, Modelling Infectious Diseases in Humans and Animals, Princeton University Press, New Jersey, 2008, 384 pp.
[8] R. E. Baker, W. Yang, G. A. Vecchi, C. J. Metcalf, B. Greenfell, “Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic”, Science | DOI
[9] U. Ledzewicz, H. Schattler, “On optimal singular controls for a general SIR-model with vaccination and treatment”, Discrete and Continuous Dynamic. Systems, 2 (2011), 981–990
[10] A. A. Romaniukha, Matematicheskie modeli v immunologii i epidemiologii infektsionnykh zabolevanii, Izd-vo Binom, M., 2011, 285 pp.
[11] G. I. Marchuk, Matematicheskie modeli v immunologii. Vychislitelnye metody i eksperimenty, Nauka, M., 1991, 304 pp.
[12] Y. Liu, Y. Zhao, “The spread behavior analysis of a SIQR epidemic model under the small world network environment”, IOP Conf. Series: Journal of Physics. Conf. Series, 1267 (2019), 012042 | DOI
[13] T. Odagaki, “Exact properties of SIQR model for COVID-19”, Physica A, 564 (2021), 125564 | DOI
[14] L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, D. Liu, “Early prediction of the 2019 novel coronavirus outbreak in the mainland China based on simple mathematical model”, IEEE Access, 8 (2020), 51761–51768 | DOI
[15] A. I. Shnip, “Kineticheskaia model dinamiki epidemii i ee testirovanie na dannykh rasprostraneniia epidemii COVID-19”, Inzh. fizich. zhurnal, 94:1 (2021), 9–21
[16] I. V. Derevich, A. A. Panova, “Raschet skorosti infitsirovaniia COVID-19 na osnove metoda pogruzheniia”, Inzhenerno-fizicheskii zhurnal, 94:1 (2021), 22–34
[17] H. Hethcote, “The Mathematics of Infectious Diseases”, SIAM Review, 42 (2000), 599–653 | DOI | Zbl
[18] C. Dye, “Epidemiology: Modeling the SARS Epidemic”, Science, 300 (2003), 1884–1885 | DOI
[19] J. Koopman, “Modeling infection transmission”, Annu. Rev. Public Health, 25 (2004), 303–326 | DOI
[20] J. H. Jones, Notes on $R_0$, Stanford university, Stanford, 2007, 19 pp.
[21] P. V. Driessche, J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission”, Math Biosci., 180 (2002), 29–48 | DOI | Zbl
[22] S. Zhao, J. Ran, S. S. Musa et al, “Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak”, Int. J. Infect. Dis., 92 (2020), 214–217 | DOI
[23] R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991, 757 pp.