Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_11_a1, author = {M. Yu. Ovchinnikov and A. D. Guerman and Y. V. Mashtakov and D. S. Roldugin}, title = {Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {18--38}, publisher = {mathdoc}, volume = {33}, number = {11}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/} }
TY - JOUR AU - M. Yu. Ovchinnikov AU - A. D. Guerman AU - Y. V. Mashtakov AU - D. S. Roldugin TI - Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system JO - Matematičeskoe modelirovanie PY - 2021 SP - 18 EP - 38 VL - 33 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/ LA - ru ID - MM_2021_33_11_a1 ER -
%0 Journal Article %A M. Yu. Ovchinnikov %A A. D. Guerman %A Y. V. Mashtakov %A D. S. Roldugin %T Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system %J Matematičeskoe modelirovanie %D 2021 %P 18-38 %V 33 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/ %G ru %F MM_2021_33_11_a1
M. Yu. Ovchinnikov; A. D. Guerman; Y. V. Mashtakov; D. S. Roldugin. Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 18-38. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/
[1] N. H. Crisp et al, “The benefits of very low earth orbit for earth observation missions”, Prog. Aerosp. Sci., 117 (2020), 100619 | DOI
[2] S. T. Demetriades, “A Novel System for Space Flight Using a Propulsive Fluid Accumulator”, J. Br. Interplanet. Soc., 17:5 (1959), 114–119
[3] A. S. Filatyev, O. V. Yanova, “The control optimization of low-orbit spacecraft with electric ramjet”, Acta Astronaut., 158 (2019), 23–31 | DOI
[4] J. S. Greenhow, E. L. Neufeld, “Winds in the upper atmosphere”, Q. J. R. Meteorol. Soc., 87:374 (1961), 472–489 | DOI
[5] A. E. Hedin et al, “Empirical wind model for the upper, middle and lower atmosphere”, J. Atmos. Terr. Phys., 58:13 (1996), 1421–1447 | DOI
[6] M. A. Hitt et al., “Airbreathing Electric Propulsion Survey”, AIAA Propulsion and Energy 2019 Forum, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2019
[7] M. Lovera, A. Astolfi, “Spacecraft attitude control using magnetic actuators”, Automatica, 40:8 (2004), 1405–1414 | DOI | Zbl
[8] Y. V. Mashtakov, M. Yu. Ovchinnikov, S. S. Tkachev, “Study of the disturbances effect on small satellite route tracking accuracy”, Acta Astronaut., 129 (2016) | DOI
[9] M. van der Meijde et al, “GOCE data, models, and applications: A review”, Int. J. Appl. Earth Obs. Geoinform., 35 (2015), 4–15 | DOI
[10] M. Yu. Ovchinnikov, D. S. Roldugin, V. I. Penkov, “Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation”, Acta Astronaut., 77 (2012), 48–60 | DOI
[11] F. Romano et al, “Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)”, Acta Astronaut., 187 (2021), 225–235 | DOI
[12] L. A. Singh, M. L. R. Walker, “A review of research in low earth orbit propellant collection”, Prog. Aerosp. Sci., 75 (2015), 15–25 | DOI
[13] E. Thébault et al, “International Geomagnetic Reference Field: the 12th generation”, Earth, Planets Sp., 67:1 (2015), 79 | DOI
[14] P. Tsiotras, “New Control Laws for the Attitude Stabilization of Rigid Bodies”, 13th IFAC Symposium on Automatic Control in Aerospace, 1994, 316–321
[15] B. Wie, P. M. Barba, “Quaternion feedback for spacecraft large angle maneuvers”, J. Guid. Control. Dyn., 8:3 (1985), 360–365 | DOI | Zbl
[16] R. Wisniewski, M. Blanke, “Fully magnetic attitude control for spacecraft subject to gravity gradient”, Automatica, 35:7 (1999), 1201–1214 | DOI | Zbl
[17] V. V. Beletskiy, A. M. Yanshin, Vliianie aerodinamicheskikh sil na vrashchatelnoe dvizhenie iskusstvennykh sputnikov, Naukova dumka, K., 1984, 188 pp.
[18] A. I. Erofeev et al, “Razrabotka vozdushnogo priamotochnogo elektroreaktivnogo dvigatelia dlia kompensatsii arodinamicheskogo tormozheniia nizkoorbitalnykh kosmicheskikh apparatov”, Vestnik NPO im. S.A. Lavochkina, 3:33 (2011), 104–110
[19] A. I. Erofeev, “Vozdukhozabornik v perekhodnom rezhime techeniia razrezhennogo gaza”, Uchenye zapiski TSAGI, 49:2 (2018), 28–38
[20] M. Y. Marov, A. S. Filatyev, “Integrated Studies of Electric Propulsion Engines during Flights in the Earth's Ionosphere”, Cosmic Research, 56:2 (2018)
[21] D. F. Rogers, J. A. Adams, Mathematical elements for computer graphics, Second edition, McGraw Hills, Inc, 1990, 611 pp.
[22] IERS Conventions, IERS Technical note No 33
[23] GOST 20058-80. Dinamika letatelnykh apparatov v atmosfere. Terminy, opredeleniia i oboznacheniia