Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system
Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 18-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simulation of a satellite motion on an extremely low Earth orbit with approximately 175 km altitude is performed. The satellite is equipped with the air-breathing electric propulsion system that compensates the aerodynamic drag. Simulation of the controlled angular motion is performed with major disturbance factors. Namely, errors in the mass distribution, propulsion system thrust direction and position errors, and winds in the atmosphere. Control system power consumption in different operational modes is estimated.
Keywords: air-breathing propulsion, extremely low orbit.
Mots-clés : electric propulsion
@article{MM_2021_33_11_a1,
     author = {M. Yu. Ovchinnikov and A. D. Guerman and Y. V. Mashtakov and D. S. Roldugin},
     title = {Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--38},
     publisher = {mathdoc},
     volume = {33},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/}
}
TY  - JOUR
AU  - M. Yu. Ovchinnikov
AU  - A. D. Guerman
AU  - Y. V. Mashtakov
AU  - D. S. Roldugin
TI  - Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 18
EP  - 38
VL  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/
LA  - ru
ID  - MM_2021_33_11_a1
ER  - 
%0 Journal Article
%A M. Yu. Ovchinnikov
%A A. D. Guerman
%A Y. V. Mashtakov
%A D. S. Roldugin
%T Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system
%J Matematičeskoe modelirovanie
%D 2021
%P 18-38
%V 33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/
%G ru
%F MM_2021_33_11_a1
M. Yu. Ovchinnikov; A. D. Guerman; Y. V. Mashtakov; D. S. Roldugin. Mathematical modelling of the dynamics of a satellite equipped with atmosphere-breathing electric propulsion system. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 18-38. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a1/

[1] N. H. Crisp et al, “The benefits of very low earth orbit for earth observation missions”, Prog. Aerosp. Sci., 117 (2020), 100619 | DOI

[2] S. T. Demetriades, “A Novel System for Space Flight Using a Propulsive Fluid Accumulator”, J. Br. Interplanet. Soc., 17:5 (1959), 114–119

[3] A. S. Filatyev, O. V. Yanova, “The control optimization of low-orbit spacecraft with electric ramjet”, Acta Astronaut., 158 (2019), 23–31 | DOI

[4] J. S. Greenhow, E. L. Neufeld, “Winds in the upper atmosphere”, Q. J. R. Meteorol. Soc., 87:374 (1961), 472–489 | DOI

[5] A. E. Hedin et al, “Empirical wind model for the upper, middle and lower atmosphere”, J. Atmos. Terr. Phys., 58:13 (1996), 1421–1447 | DOI

[6] M. A. Hitt et al., “Airbreathing Electric Propulsion Survey”, AIAA Propulsion and Energy 2019 Forum, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2019

[7] M. Lovera, A. Astolfi, “Spacecraft attitude control using magnetic actuators”, Automatica, 40:8 (2004), 1405–1414 | DOI | Zbl

[8] Y. V. Mashtakov, M. Yu. Ovchinnikov, S. S. Tkachev, “Study of the disturbances effect on small satellite route tracking accuracy”, Acta Astronaut., 129 (2016) | DOI

[9] M. van der Meijde et al, “GOCE data, models, and applications: A review”, Int. J. Appl. Earth Obs. Geoinform., 35 (2015), 4–15 | DOI

[10] M. Yu. Ovchinnikov, D. S. Roldugin, V. I. Penkov, “Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation”, Acta Astronaut., 77 (2012), 48–60 | DOI

[11] F. Romano et al, “Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)”, Acta Astronaut., 187 (2021), 225–235 | DOI

[12] L. A. Singh, M. L. R. Walker, “A review of research in low earth orbit propellant collection”, Prog. Aerosp. Sci., 75 (2015), 15–25 | DOI

[13] E. Thébault et al, “International Geomagnetic Reference Field: the 12th generation”, Earth, Planets Sp., 67:1 (2015), 79 | DOI

[14] P. Tsiotras, “New Control Laws for the Attitude Stabilization of Rigid Bodies”, 13th IFAC Symposium on Automatic Control in Aerospace, 1994, 316–321

[15] B. Wie, P. M. Barba, “Quaternion feedback for spacecraft large angle maneuvers”, J. Guid. Control. Dyn., 8:3 (1985), 360–365 | DOI | Zbl

[16] R. Wisniewski, M. Blanke, “Fully magnetic attitude control for spacecraft subject to gravity gradient”, Automatica, 35:7 (1999), 1201–1214 | DOI | Zbl

[17] V. V. Beletskiy, A. M. Yanshin, Vliianie aerodinamicheskikh sil na vrashchatelnoe dvizhenie iskusstvennykh sputnikov, Naukova dumka, K., 1984, 188 pp.

[18] A. I. Erofeev et al, “Razrabotka vozdushnogo priamotochnogo elektroreaktivnogo dvigatelia dlia kompensatsii arodinamicheskogo tormozheniia nizkoorbitalnykh kosmicheskikh apparatov”, Vestnik NPO im. S.A. Lavochkina, 3:33 (2011), 104–110

[19] A. I. Erofeev, “Vozdukhozabornik v perekhodnom rezhime techeniia razrezhennogo gaza”, Uchenye zapiski TSAGI, 49:2 (2018), 28–38

[20] M. Y. Marov, A. S. Filatyev, “Integrated Studies of Electric Propulsion Engines during Flights in the Earth's Ionosphere”, Cosmic Research, 56:2 (2018)

[21] D. F. Rogers, J. A. Adams, Mathematical elements for computer graphics, Second edition, McGraw Hills, Inc, 1990, 611 pp.

[22] IERS Conventions, IERS Technical note No 33

[23] GOST 20058-80. Dinamika letatelnykh apparatov v atmosfere. Terminy, opredeleniia i oboznacheniia