Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_11_a0, author = {A. F. Ginevsky and D. A. Ginevsky and P. V. Izhevsky}, title = {Numerical modeling of space-time distribution of a drug agent in biological tissue}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--17}, publisher = {mathdoc}, volume = {33}, number = {11}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/} }
TY - JOUR AU - A. F. Ginevsky AU - D. A. Ginevsky AU - P. V. Izhevsky TI - Numerical modeling of space-time distribution of a drug agent in biological tissue JO - Matematičeskoe modelirovanie PY - 2021 SP - 3 EP - 17 VL - 33 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/ LA - ru ID - MM_2021_33_11_a0 ER -
%0 Journal Article %A A. F. Ginevsky %A D. A. Ginevsky %A P. V. Izhevsky %T Numerical modeling of space-time distribution of a drug agent in biological tissue %J Matematičeskoe modelirovanie %D 2021 %P 3-17 %V 33 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/ %G ru %F MM_2021_33_11_a0
A. F. Ginevsky; D. A. Ginevsky; P. V. Izhevsky. Numerical modeling of space-time distribution of a drug agent in biological tissue. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/
[1] W. S. Kiger, M. R. Palmer, K. J. Riley, R. G. Zamenhof, P. M. Busse, “Pharamacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: $^{10}$B concentration predictions and dosimetric consequences”, J. of Neuro-Oncology, 62 (2003), 171–186 | DOI
[2] M. J. Kim, R. J. Gillies, K. A. Rejniak, “Current advances in mathematical modeling of anticancer drug penetration into tumor tissues”, Front. Oncol., 3 (2013), 1–10
[3] K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, R. Zbořil, “Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies”, Chem. Rev., 116:9 (2016), 5338–5431 | DOI
[4] E. Sykova, Ch. Nicholson, “Diffusion in brain extracellular space”, Physiol. Rev., 88:4 (2008), 1277–1340 | DOI
[5] J. Schuemann, A. F. Bagley, R. Berbeco, K. Bromma et al., “Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions”, Phys. Med. Biol., 65(21):21 (2020), RM02 | DOI
[6] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Springer, 2016, 791 pp. | Zbl
[7] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2nd Edition, 2003, 547 pp. | Zbl
[8] H. Fukuda, C. Honda, N. Wadabayashi, T. Kobayashi, K. Yoshino, J. Hiratsuka, J. Takahashi, T. Akaizawa, Y. Abe, M. Ichihashi, Y. Mishima, “Pharmacokinetics of $^{10}$B-p-borono-phenylalanine in tumours, skin and blood of melanoma patients: a study of boron neutron capture therapy for malignant melanoma”, Melanoma Research, 1999, February, 75–84 | DOI
[9] H. Fukuda, J. Hiratsuka, “Pharmacokinetics of $^{10}$B-p-boronophenylalanine (BPA) in the blood and tumors in human patients: A critical review with special reference to tumor-to-blood (T/B) ratios using resected tumor samples”, Applied Radiation and Isotopes, 166 (2020), 109308 | DOI
[10] K. A. Tacka, D. Szalda, A. K. Souid, J. Goodisman, J. C. Dabrowiak, “Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells”, Chemical Research in Toxicology, 17 (2004), 1434–1444 | DOI
[11] K. A. Tacka, J. C. Dabrowiak, J. Goodisman, H. S. Penefsky, A. K. Souid, “Effects of cisplatin on mitochondrial function in Jurkat cells”, Chemical Research in Toxicology, 17 (2004), 1102–1111 | DOI
[12] J. D. Holding, W. E. Lindup, D. A. Bowdler, M. Z. Siodlak, P. M. Stell, “Disposition and tumour concentrations of platinum in hypoalbuminaemic patients after treatment with cisplatin for cancer of the head and neck”, Br. J. Clin. Pharmac., 32 (1991), 173–179 | DOI
[13] S. Xu, B. Z. Olenyuk, C. T. Okamoto, S. F. Hamm-Alvarez, “Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances”, Adv. Drug Delivery Rev., 65:1 (2013), 121–138 | DOI
[14] D. Hymel, B. R. Peterson, “Synthetic cell surface receptors for delivery of therapeutics and probes”, Adv. Drug Delivery Rev., 64:9 (2012), 763–884 | DOI
[15] H. Hillaireau, P. Couvreur, “Nanocarriers' entry into the cell: Relevance to drug delivery”, Cell. Mol. Life Sci., 66:17 (2009), 2873–2896 | DOI