Numerical modeling of space-time distribution of a drug agent in biological tissue
Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the pharmacokinetics of anticancer drugs is presented. The model uses the biological tissue as a randomly inhomogeneous medium. Model is based on reaction-diffusion equation system, coefficients of which are random functions of space and time. The coefficients of the model are calculated based on the probability of processes occurring in living tissue. Proposed approach is applied for two drugs: for “Cisplatin”, which is used in cancer chemotherapy, and “Boron-phenylalanine”, which was proposed as an agent, increasing the dose during irradiation. The model demonstrates a good agreement with experimental results. The described method of modeling of pharmacokinetics of drugs can serve as universal approach for study of the space-time distributions for many drugs, including those using nanoparticles. The simulation results allow to propose optimization of the existing protocols for chemotherapeutic and radiological treatment.
Keywords: model, kinetics, therapy, oncology, drug, cells.
@article{MM_2021_33_11_a0,
     author = {A. F. Ginevsky and D. A. Ginevsky and P. V. Izhevsky},
     title = {Numerical modeling of space-time distribution of a drug agent in biological tissue},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {33},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/}
}
TY  - JOUR
AU  - A. F. Ginevsky
AU  - D. A. Ginevsky
AU  - P. V. Izhevsky
TI  - Numerical modeling of space-time distribution of a drug agent in biological tissue
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 17
VL  - 33
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/
LA  - ru
ID  - MM_2021_33_11_a0
ER  - 
%0 Journal Article
%A A. F. Ginevsky
%A D. A. Ginevsky
%A P. V. Izhevsky
%T Numerical modeling of space-time distribution of a drug agent in biological tissue
%J Matematičeskoe modelirovanie
%D 2021
%P 3-17
%V 33
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/
%G ru
%F MM_2021_33_11_a0
A. F. Ginevsky; D. A. Ginevsky; P. V. Izhevsky. Numerical modeling of space-time distribution of a drug agent in biological tissue. Matematičeskoe modelirovanie, Tome 33 (2021) no. 11, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2021_33_11_a0/

[1] W. S. Kiger, M. R. Palmer, K. J. Riley, R. G. Zamenhof, P. M. Busse, “Pharamacokinetic modeling for boronophenylalanine-fructose mediated neutron capture therapy: $^{10}$B concentration predictions and dosimetric consequences”, J. of Neuro-Oncology, 62 (2003), 171–186 | DOI

[2] M. J. Kim, R. J. Gillies, K. A. Rejniak, “Current advances in mathematical modeling of anticancer drug penetration into tumor tissues”, Front. Oncol., 3 (2013), 1–10

[3] K. Ulbrich, K. Holá, V. Šubr, A. Bakandritsos, J. Tuček, R. Zbořil, “Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies”, Chem. Rev., 116:9 (2016), 5338–5431 | DOI

[4] E. Sykova, Ch. Nicholson, “Diffusion in brain extracellular space”, Physiol. Rev., 88:4 (2008), 1277–1340 | DOI

[5] J. Schuemann, A. F. Bagley, R. Berbeco, K. Bromma et al., “Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions”, Phys. Med. Biol., 65(21):21 (2020), RM02 | DOI

[6] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Springer, 2016, 791 pp. | Zbl

[7] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2nd Edition, 2003, 547 pp. | Zbl

[8] H. Fukuda, C. Honda, N. Wadabayashi, T. Kobayashi, K. Yoshino, J. Hiratsuka, J. Takahashi, T. Akaizawa, Y. Abe, M. Ichihashi, Y. Mishima, “Pharmacokinetics of $^{10}$B-p-borono-phenylalanine in tumours, skin and blood of melanoma patients: a study of boron neutron capture therapy for malignant melanoma”, Melanoma Research, 1999, February, 75–84 | DOI

[9] H. Fukuda, J. Hiratsuka, “Pharmacokinetics of $^{10}$B-p-boronophenylalanine (BPA) in the blood and tumors in human patients: A critical review with special reference to tumor-to-blood (T/B) ratios using resected tumor samples”, Applied Radiation and Isotopes, 166 (2020), 109308 | DOI

[10] K. A. Tacka, D. Szalda, A. K. Souid, J. Goodisman, J. C. Dabrowiak, “Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells”, Chemical Research in Toxicology, 17 (2004), 1434–1444 | DOI

[11] K. A. Tacka, J. C. Dabrowiak, J. Goodisman, H. S. Penefsky, A. K. Souid, “Effects of cisplatin on mitochondrial function in Jurkat cells”, Chemical Research in Toxicology, 17 (2004), 1102–1111 | DOI

[12] J. D. Holding, W. E. Lindup, D. A. Bowdler, M. Z. Siodlak, P. M. Stell, “Disposition and tumour concentrations of platinum in hypoalbuminaemic patients after treatment with cisplatin for cancer of the head and neck”, Br. J. Clin. Pharmac., 32 (1991), 173–179 | DOI

[13] S. Xu, B. Z. Olenyuk, C. T. Okamoto, S. F. Hamm-Alvarez, “Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances”, Adv. Drug Delivery Rev., 65:1 (2013), 121–138 | DOI

[14] D. Hymel, B. R. Peterson, “Synthetic cell surface receptors for delivery of therapeutics and probes”, Adv. Drug Delivery Rev., 64:9 (2012), 763–884 | DOI

[15] H. Hillaireau, P. Couvreur, “Nanocarriers' entry into the cell: Relevance to drug delivery”, Cell. Mol. Life Sci., 66:17 (2009), 2873–2896 | DOI