Computer complex for modelling of sea currents using regularized shallow water equations
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 109-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes the computational system for modeling sea currents, which is based on a hydrodynamic model with regularized shallow water equations. A system of regularized equations is presented and a methodology for its solution is briefly described, including an algorithm for calculating dry-bed areas. A parallelization efficiency test of the program code on a high-performance computing system was carried out. Acceleration curve obtained. The structure of the program and its interaction with external modules are described. Test calculations of tidal fluctuations of the northern seas have been carried out. The calculated area covers the White Sea, the Pechora Sea, parts of the Barents and Kara Seas, as well as the Kara Gates Strait. The results obtained describe well the tidal phenomena in the study area.
Keywords: shallow water equations, dry-bed areas, software system, coastal currents, regularized equations.
@article{MM_2021_33_10_a7,
     author = {A. V. Ivanov},
     title = {Computer complex for modelling of sea currents using regularized shallow water equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a7/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Computer complex for modelling of sea currents using regularized shallow water equations
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 109
EP  - 128
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a7/
LA  - ru
ID  - MM_2021_33_10_a7
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Computer complex for modelling of sea currents using regularized shallow water equations
%J Matematičeskoe modelirovanie
%D 2021
%P 109-128
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a7/
%G ru
%F MM_2021_33_10_a7
A. V. Ivanov. Computer complex for modelling of sea currents using regularized shallow water equations. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 109-128. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a7/

[1] S. K. Popov, “Vliianie morskogo lda na prilivnye kolebaniia urovnia moria i skorosti techenii v Barentsevom i Belom moriakh”, Trudy Gidromettsentra RF, Gidrometeorologicheskie issledovaniia i prognozy, 370:4 (2018), 137–155

[2] N. A. Diansky, I. I. Panasenkova, V. V. Fomin, “Investigation of the Barents Sea Upper Layer Response to the Polar Low in 1975”, Phys. Oceanography [e-journal], 26:6 (2019), 467–483

[3] E. G. Morozov, D. I. Frey, N. A. Diansky, V. V. Fomin, “Bottom circulation in the Norwegian Sea”, Russ. J. Earth Sci., 19:2 (2019), 1–6 | DOI | MR

[4] A. I. Sukhinov, A. E. Chistyakov, A. V. Shishenya, E. F. Timofeeva, “Predictive modelling of coastal hydrophysical processes in a multiprocession system based on explicit schemes”, Math. Models Comput. Simul., 10:5 (2018), 648–658 | DOI | MR | Zbl

[5] V. S. Vasilev, A. I. Sukhinov, “Pretsizionnye dvumernye modeli melkikh vodoemov”, Matem. modelirovanie, 15:10 (2003), 17–34 | MR | Zbl

[6] Iu. V. Liubitskii, E. M. Verbitskaia, Z. V. Verbitskaia, L. S. Miakina, “Metod i tekhnologia prognoza shtormovykh nagonov v Amurskom limane I Sakhalinskom zalive”, Trudy GU Dalnevost. regionalnii nauch. issled. Gidrometeorol. institut, 2010, no. 1, 57–73

[7] M. Gurvan et al., “NEMO ocean engine”, Sci. Notes of Climate Model. Center, 2019, no. 27

[8] W. C. Skamarock et al, A Description of the Advanced Research WRF Model Version 4, UCAR/NCAR, 2019

[9] G. D. Egbert, S. Y. Erofeeva, “Efficient Inverse Modeling of Barotropic Ocean Tides”, J. Atmos. Oceanic Technol., 19:2 (2002), 183–204 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, Spain, 2008, 298 pp. | MR

[11] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl

[12] Iu. V. Sheretov, Reguliarizovannye uravneniia gidrodinamiki, Tverskoi gosudarstvennyi universitet, Tver, 2016, 222 pp.

[13] O. V. Bulatov, T. G. Elizarova, “Regularized Shallow Water Equations and an Efficient Method for Numerical Simulation of Shallow Water Flows”, J. Computational Mathematics and Mathematical Physics, 51:1 (2011), 160–173 | DOI | MR | Zbl

[14] T. G. Elizarova, D. S. Saburin, “Application of the regularized shallow water equations for numerical simulations of seiche level oscillations in the sea of Azov”, Mathematical Models and Computer Simulations, 9:4 (2017), 423–436 | DOI | MR | Zbl

[15] O. V. Bulatov, T. G. Elizarova, “Regularized shallow water equations for numerical simulation of flows with a moving shoreline”, Comput. Math. Math. Phys., 56:4 (2016), 661–679 | DOI | MR | Zbl

[16] P. Brufau, P. García-Navarro, M. E. Vázquez-Cendón, “Zero mass error using unsteady wet-ting-drying conditions in shallow flows over dry irregular topography”, Int. J. Numer. Meth. Fluids, 45:10 (2004), 1047–1082 | DOI | MR | Zbl

[17] Y. Huang, N. Zhang, Y. Pei, “Well-Balanced Finite Volume Scheme for Shallow Water Flooding and Drying Over Arbitrary Topography”, Eng. Appl. of Comput. Fluid Mechanics, 7:1 (2013), 40–54

[18] S. K. Popov, A. L. Lobov, V. V. Elisov, V. I. Batov, “A tide in the operational model for short-range forecast of current velocity and sea level in the Barents and White Seas”, Russian Meteorology and Hydrology, 38:6 (2013), 414–425 | DOI

[19] A. I. Duvanin, Prilivy v more, Gidrometeorologicheskoe izdatelstvo, L., 1960

[20] J. Meeus, Astronomical formulae for calculators, Willmann-Bell, Inc., Richmond, Virginia, USA, 1988

[21] N. C. Glen, The admiralty method of tidal prediction, N.P. 159, International Hydrographie Review, Monaco, 1977

[22] N. A. Diansky, Modelirovanie tsirkuliatsii okeana i issledovanie ego reaktsii na korotkoperiodnye i dolgoperiondnye atmosfernye vozdeistviia, FIZMATLIT, M., 2013

[23] K. Belyaev, A. Kuleshov, I. Smirnov, “Data Assimilation Method for the Ocean Circulation Model NEMO and Its Application for the Calculation of Ocean Characteristics in the Arctic Zone of Russia”, Proceedings 2019 Ivannikov Ispras Open Conference, 2019, 87–91 | DOI | MR