Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_10_a6, author = {D. V. Golovin}, title = {Numerical simulation of sound pressure for calibration system of {\emph{LS}} type measurement microphones}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {96--108}, publisher = {mathdoc}, volume = {33}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/} }
TY - JOUR AU - D. V. Golovin TI - Numerical simulation of sound pressure for calibration system of \emph{LS} type measurement microphones JO - Matematičeskoe modelirovanie PY - 2021 SP - 96 EP - 108 VL - 33 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/ LA - ru ID - MM_2021_33_10_a6 ER -
D. V. Golovin. Numerical simulation of sound pressure for calibration system of \emph{LS} type measurement microphones. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/
[1] H. Gerber, “Acoustic properties of fluid-filled chambers at infrasonic frequencies in the absence of convection”, Journal of Acoustical Society of America, 36 (1964), 1427–1434 | DOI | MR
[2] C. Zwikker, C. W. Kosten, Sound absorbing materials, Chapter II, § 4, Elsevier, Amsterdam, 1949
[3] P. M. Morse, K. U. Ingard, Theoretical Acoustics, Chapters 6.4 and 9.2, McGrow-Hill, NY., 1968
[4] R. J. Jackett, “The effect of heat conduction on the realization of the primary standard for sound pressure”, Metrologia, 51:5 (2014), 423–430 | DOI
[5] P. Vincent, D. Rodrigues, F. Larsonnier et al, “Acoustic transfer admittance of cylindrical cavities in infrasonic frequency range”, Metrologia, 56:1 (2019), 015003 | DOI | MR
[6] K. N. Volkov, Iu. N. Deriugin, V. N. Emelianov, Metody uskoreniia gazodinamicheskikh raschetov na nestryktyrirovannykh setkakh, FIZMATLIT, M., 2014, 536 pp.
[7] I. V. Abalakin, V. G. Bobkov, T. K. Kozubskaya, “Implementation of the low Mach number method for calculating flows in the NOISEtte software package”, Mathematical Models and Computer Simulations, 2017, no. 9, 688–696 | DOI | MR | MR | Zbl
[8] E. Turkel, “Preconditioning Techniques in Computational Fluid Dynamics”, Annual Rev. of Fluid Mechanics, 31 (1999), 385–416 | DOI | MR
[9] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems”, J. of Computational Physics, 2:1 (1967), 12–26 | DOI | MR | Zbl
[10] S. E. Rogers, D. Kwak, C. Kiris, “Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations”, AIAA J., 29:4 (1991), 603–610 | DOI
[11] S. E. Rogers, D. Kwak, “An upwind differencing scheme for the incompressible Navier-Stokes equations”, Applied Numerical Mathematics, 8:1 (1991), 43–64 | DOI | MR | Zbl
[12] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. of Computational Physics, 43:2 (1981), 357–372 | DOI | MR | Zbl
[13] F. Rieper, “A low-Mach number fix for Roe's approximate Riemann solver”, J. of Computational Physics, 230:13 (2011), 5263–5287 | DOI | MR | Zbl
[14] X-S. Li, C-W. Gu, “An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour”, Journal of Computational Physics, 227:10 (2008), 5144–5159 | DOI | MR | Zbl
[15] M. S. Liou, C. J. Steffen, “A New Flux Splitting Scheme”, J. of Comp. Phys., 107:1 (1993), 23–39 | DOI | MR | Zbl
[16] M.-S. Liou, “A Sequel to AUSM: AUSM+”, J. of Comp. Phys., 129:2 (1996), 364–382 | DOI | MR | Zbl
[17] M. S. Liou, “A sequel to AUSM, Part II: AUSM+-up for all speeds”, J. of Computational Physics, 214:1 (2006), 137–170 | DOI | MR | Zbl
[18] V. A. Balashov, E. B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers”, Comput. Math. and Math. Phys., 55 (2015), 1743–1751 | DOI | DOI | MR | Zbl
[19] D. V. Golovin, “Modelirovanie infrazvykovogo pistonfona”, Trydy Instityta Sistemnogo programmirovaniia RAN, 32:5 (2020), 181–198 | DOI
[20] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer-Verlag, Berlin–Heidelberg, 2009, 286 pp. | DOI | MR | Zbl
[21] Iu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITS «Reguliarnaia i khaoticheskaia dinamika», M.–Izhevsk, 2009, 400 pp.