Numerical simulation of sound pressure for calibration system of \emph{LS} type measurement microphones
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The are presented the results of sound pressure modeling at calibration system of LS type measurement microphones, based on the reciprocity method, using quasi-gas dynamic (QGD) approach at the frequency range from $1$ Hz to $10$ kHz. The numerical method based on QGD equations for a compressible viscous heat-conducting gas is constructed using explicit scheme, the finite difference method for a uniform grid with the approximation of spatial derivatives through central differences, and using the fictious domain method to approximate boundary conditions. A special feature of the computational problem at the studied frequency range is extremely low Mach numbers with the value from $7.3\cdot10^{-10}$ to $7.3\cdot10^{-6}$. The good agreement of the simulation results with the known analytical solution proves the applicability of the QGD approach for gas flow simulations with extremely low Mach numbers and problems of acoustics in particular.
Keywords: reciprocity method, measurement microphones, low Mach numbers.
Mots-clés : quasi-gas-dynamic equations
@article{MM_2021_33_10_a6,
     author = {D. V. Golovin},
     title = {Numerical simulation of sound pressure for calibration system of {\emph{LS}} type measurement microphones},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/}
}
TY  - JOUR
AU  - D. V. Golovin
TI  - Numerical simulation of sound pressure for calibration system of \emph{LS} type measurement microphones
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 96
EP  - 108
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/
LA  - ru
ID  - MM_2021_33_10_a6
ER  - 
%0 Journal Article
%A D. V. Golovin
%T Numerical simulation of sound pressure for calibration system of \emph{LS} type measurement microphones
%J Matematičeskoe modelirovanie
%D 2021
%P 96-108
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/
%G ru
%F MM_2021_33_10_a6
D. V. Golovin. Numerical simulation of sound pressure for calibration system of \emph{LS} type measurement microphones. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a6/

[1] H. Gerber, “Acoustic properties of fluid-filled chambers at infrasonic frequencies in the absence of convection”, Journal of Acoustical Society of America, 36 (1964), 1427–1434 | DOI | MR

[2] C. Zwikker, C. W. Kosten, Sound absorbing materials, Chapter II, § 4, Elsevier, Amsterdam, 1949

[3] P. M. Morse, K. U. Ingard, Theoretical Acoustics, Chapters 6.4 and 9.2, McGrow-Hill, NY., 1968

[4] R. J. Jackett, “The effect of heat conduction on the realization of the primary standard for sound pressure”, Metrologia, 51:5 (2014), 423–430 | DOI

[5] P. Vincent, D. Rodrigues, F. Larsonnier et al, “Acoustic transfer admittance of cylindrical cavities in infrasonic frequency range”, Metrologia, 56:1 (2019), 015003 | DOI | MR

[6] K. N. Volkov, Iu. N. Deriugin, V. N. Emelianov, Metody uskoreniia gazodinamicheskikh raschetov na nestryktyrirovannykh setkakh, FIZMATLIT, M., 2014, 536 pp.

[7] I. V. Abalakin, V. G. Bobkov, T. K. Kozubskaya, “Implementation of the low Mach number method for calculating flows in the NOISEtte software package”, Mathematical Models and Computer Simulations, 2017, no. 9, 688–696 | DOI | MR | MR | Zbl

[8] E. Turkel, “Preconditioning Techniques in Computational Fluid Dynamics”, Annual Rev. of Fluid Mechanics, 31 (1999), 385–416 | DOI | MR

[9] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems”, J. of Computational Physics, 2:1 (1967), 12–26 | DOI | MR | Zbl

[10] S. E. Rogers, D. Kwak, C. Kiris, “Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations”, AIAA J., 29:4 (1991), 603–610 | DOI

[11] S. E. Rogers, D. Kwak, “An upwind differencing scheme for the incompressible Navier-Stokes equations”, Applied Numerical Mathematics, 8:1 (1991), 43–64 | DOI | MR | Zbl

[12] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. of Computational Physics, 43:2 (1981), 357–372 | DOI | MR | Zbl

[13] F. Rieper, “A low-Mach number fix for Roe's approximate Riemann solver”, J. of Computational Physics, 230:13 (2011), 5263–5287 | DOI | MR | Zbl

[14] X-S. Li, C-W. Gu, “An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour”, Journal of Computational Physics, 227:10 (2008), 5144–5159 | DOI | MR | Zbl

[15] M. S. Liou, C. J. Steffen, “A New Flux Splitting Scheme”, J. of Comp. Phys., 107:1 (1993), 23–39 | DOI | MR | Zbl

[16] M.-S. Liou, “A Sequel to AUSM: AUSM+”, J. of Comp. Phys., 129:2 (1996), 364–382 | DOI | MR | Zbl

[17] M. S. Liou, “A sequel to AUSM, Part II: AUSM+-up for all speeds”, J. of Computational Physics, 214:1 (2006), 137–170 | DOI | MR | Zbl

[18] V. A. Balashov, E. B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers”, Comput. Math. and Math. Phys., 55 (2015), 1743–1751 | DOI | DOI | MR | Zbl

[19] D. V. Golovin, “Modelirovanie infrazvykovogo pistonfona”, Trydy Instityta Sistemnogo programmirovaniia RAN, 32:5 (2020), 181–198 | DOI

[20] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer-Verlag, Berlin–Heidelberg, 2009, 286 pp. | DOI | MR | Zbl

[21] Iu. V. Sheretov, Dinamika sploshnykh sred pri prostranstvenno-vremennom osrednenii, NITS «Reguliarnaia i khaoticheskaia dinamika», M.–Izhevsk, 2009, 400 pp.