Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_10_a5, author = {V. G. Nikitaev and A. N. Pronichev and O. B. Tamrazova and V. Yu. Sergeev and A. O. Lim and V. S. Kozlov}, title = {Model for detecting globules in images of skin neoplasms}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--95}, publisher = {mathdoc}, volume = {33}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/} }
TY - JOUR AU - V. G. Nikitaev AU - A. N. Pronichev AU - O. B. Tamrazova AU - V. Yu. Sergeev AU - A. O. Lim AU - V. S. Kozlov TI - Model for detecting globules in images of skin neoplasms JO - Matematičeskoe modelirovanie PY - 2021 SP - 83 EP - 95 VL - 33 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/ LA - ru ID - MM_2021_33_10_a5 ER -
%0 Journal Article %A V. G. Nikitaev %A A. N. Pronichev %A O. B. Tamrazova %A V. Yu. Sergeev %A A. O. Lim %A V. S. Kozlov %T Model for detecting globules in images of skin neoplasms %J Matematičeskoe modelirovanie %D 2021 %P 83-95 %V 33 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/ %G ru %F MM_2021_33_10_a5
V. G. Nikitaev; A. N. Pronichev; O. B. Tamrazova; V. Yu. Sergeev; A. O. Lim; V. S. Kozlov. Model for detecting globules in images of skin neoplasms. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 83-95. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/
[1] V. V. Kukolkina, “Perspektivy primemeniia “mashinnogo zreniia” v skrininge i ekspertnoi otsenke pri podozrenii na melanomu kozhi”, Sovremennye aspekty profilaktiki zabolevanii, 2015, 103–105
[2] E. Harkemanne, M. Baeck, I. Tromme, “Training general practitioners in melanoma diagnosis: a scoping review of the literature”, BMJ open, 11:3 (2021), 1–12 | DOI
[3] L. Brochez, E. Verhaeghe, L. Bleyen, J. Naeyaert, “Diagnostic ability of general practitioners and dermatologists in discriminating pigmented skin lesions”, Journal of the American Academy of Dermatology, 44:6 (2001), 979–986 | DOI
[4] E. Harrington, B. Clyne, N. Wesseling, H. Sandhu, L. Armstrong, H. Bennett, T. Fahey, “Diagnosing malignant melanoma in ambulatory care: a systematic review of clinical prediction rules”, JEADV, 34 (2019), 640–647 | DOI
[5] A. D. Getman, Dermatoskopiia novoobrazovanii kozhi, Uralskii Rabochii, Ekaterinburg, 2015, 20
[6] N. G. Marghoob, K. Liopyris, N. Jaimes, “Dermoscopy: A review of the structures that facilitate melanoma detection”, The Journal of the American Osteopathic Association, 119:6 (2019), 380–390 | DOI
[7] J. Xu, K. Gupta, W. Stoecker, Y. Krishnamurthy, H. Rabinovitz, A. Bangert, D. Calcara, M. Oliviero, J. Malters, R. Drugge, R. Stanley, R. Moss, M. Celebi, “Analysis of globule types in malignant melanoma”, Archives of dermatology, 145:11 (2009), 1245–1251 | DOI
[8] E. Benati, G. Argenziano, A. Kyrgidis, E. Moscarella, S. Ciardo, S. Bassoli, F. Farnetani, S. Piana, A. M. Cesinaro, A. Lallas, S. Borsari, G. Pellacani, C. Longo, “Melanoma and naevi with a globular pattern: confocal microscopy as an aid for diagnostic differentiation”, British Journal of Dermatology, 173:5 (2015), 1232–1238 | DOI
[9] N. G. Marghoob, K. Liopyris, N. Jaimes, “Dermoscopy: A review of the structures that facilitate melanoma detection”, The Journal of the American Osteopathic Association, 119:6 (2019), 380–390 | DOI
[10] O. Reiter, E. Chousakos, N. Kurtansky, J. K. Nanda, S. W. Dusza, M. A. Marchetti, N. Jaimes, A. Moraes, A. A. Marghoob, “Association between the dermoscopic morphology of peripheral globules and melanocytic lesion diagnosis”, Journal of the European Academy of Dermatology and Venereology, 35:4 (2021), 892–899 | DOI
[11] A. Pampín-Franco, R. Gamo-Villegas, U. Floristán-Muruzábal, F. J. Pinedo-Moraleda, E. Pérez-Fernández, J. L. López-Estebaranz, “Melanocytic lesions with peripheral globules: results of an observational prospective study in 154 high risk melanoma patients under digital dermoscopy follow-up evaluated with reflectance confocal microscopy”, J. of the European Academy of Dermatology and Venereology, 2021, 1–10 | DOI
[12] G. A. Zakhem, J. W. Fakhoury, C. C. Motosko, R. S. Ho, “Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer: A systematic review”, J. of the American Academy of Dermatology, 2020, 1–13 | DOI
[13] M. A. Marchetti, K. Liopyris, S. W. Dusza, N. Codella, D. Gutman, B. Helba, A. Kalloo, A. Halpern, “Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017”, J. of the American Academy of Dermatology, 82:3 (2020), 622–627 | DOI
[14] V. G. Nikitaev, “Expert systems in information measuring complexes of oncological diagnoses”, Measurement Techniques, 58:6 (2015), 719–723 | DOI
[15] V. G. Nikitaev, “Medical and biological measurements: experimental high-technology information-measuring complexes of cancer diagnosis: problems and key points of the construction methodology”, Measurement Techniques, 58:2 (2015), 214–218 | DOI
[16] V. G. Nikitaev, “Modern measurement principles in intellectual systems for a histological diagnosis of oncological illnesses”, Measurement Techniques, 58:4 (2015), 68–70 | DOI
[17] D. Singh, D. Gautam, M. Ahmed, “Detection techniques for melanoma diagnosis: A performance evaluation”, 2014 International Conf. on Signal Propagation and Comp. Technology, ICSPCT 2014, IEEE, 2014, 567–572 | DOI
[18] S. Yoshino, T. Tanaka, M. Tanaka, H. Oka, “Application of morphology for detection of dots in tumor”, SICE 2004 Annual Conf., v. 1, IEEE, 2004, 591–594 | DOI
[19] I. Maglogiannis, K. K. Delibasis, “Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy”, Computer methods and programs in biomedicine, 118:2 (2015), 124–133 | DOI
[20] S. Chatterjee, D. Dey, S. Munshi, “Studies on a formidable dot and globule related feature extraction technique for detection of melanoma from dermoscopic images”, Proceedings of the computer, communication and electrical technology, 2017, 337–341 | DOI