Model for detecting globules in images of skin neoplasms
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to digital image processing of skin neoplasms to detect significant structural elements in the diagnosis of melanoma – globules. A new processing model is proposed that allows stable selection of globules in different-contrast images without the need for manual adjustment of parameters. The results of the experiment confirming the adequacy of the model are presented. The globules recognition accuracy ranged from 81 to 89%, depending on the contrast of the original images. The experimental sample of images contained 2.868 globules.
@article{MM_2021_33_10_a5,
     author = {V. G. Nikitaev and A. N. Pronichev and O. B. Tamrazova and V. Yu. Sergeev and A. O. Lim and V. S. Kozlov},
     title = {Model for detecting globules in images of skin neoplasms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/}
}
TY  - JOUR
AU  - V. G. Nikitaev
AU  - A. N. Pronichev
AU  - O. B. Tamrazova
AU  - V. Yu. Sergeev
AU  - A. O. Lim
AU  - V. S. Kozlov
TI  - Model for detecting globules in images of skin neoplasms
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 83
EP  - 95
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/
LA  - ru
ID  - MM_2021_33_10_a5
ER  - 
%0 Journal Article
%A V. G. Nikitaev
%A A. N. Pronichev
%A O. B. Tamrazova
%A V. Yu. Sergeev
%A A. O. Lim
%A V. S. Kozlov
%T Model for detecting globules in images of skin neoplasms
%J Matematičeskoe modelirovanie
%D 2021
%P 83-95
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/
%G ru
%F MM_2021_33_10_a5
V. G. Nikitaev; A. N. Pronichev; O. B. Tamrazova; V. Yu. Sergeev; A. O. Lim; V. S. Kozlov. Model for detecting globules in images of skin neoplasms. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 83-95. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a5/

[1] V. V. Kukolkina, “Perspektivy primemeniia “mashinnogo zreniia” v skrininge i ekspertnoi otsenke pri podozrenii na melanomu kozhi”, Sovremennye aspekty profilaktiki zabolevanii, 2015, 103–105

[2] E. Harkemanne, M. Baeck, I. Tromme, “Training general practitioners in melanoma diagnosis: a scoping review of the literature”, BMJ open, 11:3 (2021), 1–12 | DOI

[3] L. Brochez, E. Verhaeghe, L. Bleyen, J. Naeyaert, “Diagnostic ability of general practitioners and dermatologists in discriminating pigmented skin lesions”, Journal of the American Academy of Dermatology, 44:6 (2001), 979–986 | DOI

[4] E. Harrington, B. Clyne, N. Wesseling, H. Sandhu, L. Armstrong, H. Bennett, T. Fahey, “Diagnosing malignant melanoma in ambulatory care: a systematic review of clinical prediction rules”, JEADV, 34 (2019), 640–647 | DOI

[5] A. D. Getman, Dermatoskopiia novoobrazovanii kozhi, Uralskii Rabochii, Ekaterinburg, 2015, 20

[6] N. G. Marghoob, K. Liopyris, N. Jaimes, “Dermoscopy: A review of the structures that facilitate melanoma detection”, The Journal of the American Osteopathic Association, 119:6 (2019), 380–390 | DOI

[7] J. Xu, K. Gupta, W. Stoecker, Y. Krishnamurthy, H. Rabinovitz, A. Bangert, D. Calcara, M. Oliviero, J. Malters, R. Drugge, R. Stanley, R. Moss, M. Celebi, “Analysis of globule types in malignant melanoma”, Archives of dermatology, 145:11 (2009), 1245–1251 | DOI

[8] E. Benati, G. Argenziano, A. Kyrgidis, E. Moscarella, S. Ciardo, S. Bassoli, F. Farnetani, S. Piana, A. M. Cesinaro, A. Lallas, S. Borsari, G. Pellacani, C. Longo, “Melanoma and naevi with a globular pattern: confocal microscopy as an aid for diagnostic differentiation”, British Journal of Dermatology, 173:5 (2015), 1232–1238 | DOI

[9] N. G. Marghoob, K. Liopyris, N. Jaimes, “Dermoscopy: A review of the structures that facilitate melanoma detection”, The Journal of the American Osteopathic Association, 119:6 (2019), 380–390 | DOI

[10] O. Reiter, E. Chousakos, N. Kurtansky, J. K. Nanda, S. W. Dusza, M. A. Marchetti, N. Jaimes, A. Moraes, A. A. Marghoob, “Association between the dermoscopic morphology of peripheral globules and melanocytic lesion diagnosis”, Journal of the European Academy of Dermatology and Venereology, 35:4 (2021), 892–899 | DOI

[11] A. Pampín-Franco, R. Gamo-Villegas, U. Floristán-Muruzábal, F. J. Pinedo-Moraleda, E. Pérez-Fernández, J. L. López-Estebaranz, “Melanocytic lesions with peripheral globules: results of an observational prospective study in 154 high risk melanoma patients under digital dermoscopy follow-up evaluated with reflectance confocal microscopy”, J. of the European Academy of Dermatology and Venereology, 2021, 1–10 | DOI

[12] G. A. Zakhem, J. W. Fakhoury, C. C. Motosko, R. S. Ho, “Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer: A systematic review”, J. of the American Academy of Dermatology, 2020, 1–13 | DOI

[13] M. A. Marchetti, K. Liopyris, S. W. Dusza, N. Codella, D. Gutman, B. Helba, A. Kalloo, A. Halpern, “Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017”, J. of the American Academy of Dermatology, 82:3 (2020), 622–627 | DOI

[14] V. G. Nikitaev, “Expert systems in information measuring complexes of oncological diagnoses”, Measurement Techniques, 58:6 (2015), 719–723 | DOI

[15] V. G. Nikitaev, “Medical and biological measurements: experimental high-technology information-measuring complexes of cancer diagnosis: problems and key points of the construction methodology”, Measurement Techniques, 58:2 (2015), 214–218 | DOI

[16] V. G. Nikitaev, “Modern measurement principles in intellectual systems for a histological diagnosis of oncological illnesses”, Measurement Techniques, 58:4 (2015), 68–70 | DOI

[17] D. Singh, D. Gautam, M. Ahmed, “Detection techniques for melanoma diagnosis: A performance evaluation”, 2014 International Conf. on Signal Propagation and Comp. Technology, ICSPCT 2014, IEEE, 2014, 567–572 | DOI

[18] S. Yoshino, T. Tanaka, M. Tanaka, H. Oka, “Application of morphology for detection of dots in tumor”, SICE 2004 Annual Conf., v. 1, IEEE, 2004, 591–594 | DOI

[19] I. Maglogiannis, K. K. Delibasis, “Enhancing classification accuracy utilizing globules and dots features in digital dermoscopy”, Computer methods and programs in biomedicine, 118:2 (2015), 124–133 | DOI

[20] S. Chatterjee, D. Dey, S. Munshi, “Studies on a formidable dot and globule related feature extraction technique for detection of melanoma from dermoscopic images”, Proceedings of the computer, communication and electrical technology, 2017, 337–341 | DOI