Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_10_a4, author = {V. M. Goloviznin and N. A. Afanasiev}, title = {Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--82}, publisher = {mathdoc}, volume = {33}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/} }
TY - JOUR AU - V. M. Goloviznin AU - N. A. Afanasiev TI - Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects JO - Matematičeskoe modelirovanie PY - 2021 SP - 65 EP - 82 VL - 33 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/ LA - ru ID - MM_2021_33_10_a4 ER -
%0 Journal Article %A V. M. Goloviznin %A N. A. Afanasiev %T Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects %J Matematičeskoe modelirovanie %D 2021 %P 65-82 %V 33 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/ %G ru %F MM_2021_33_10_a4
V. M. Goloviznin; N. A. Afanasiev. Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 65-82. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/
[1] Y. Bazilevs, M. Hsu, D. J. Benson et al., “Computational fluid-structure interaction: methods and application to a total cavopulmonary connection”, Comp. Mech., 45 (2009), 77–89 | DOI | MR | Zbl
[2] K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, T. E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Math. Models Methods Appl. Sci., 23 (2013), 307–338 | DOI | MR | Zbl
[3] A. Korobenko, M. C. Hsu, I. Akkerman, J. Tippmann, Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Math. Models Methods Appl. Sci., 23 (2013), 249–272 | DOI | MR | Zbl
[4] J. F. Sigrist, D. Broc, C. Lainé, “Dynamic analysis of a nuclear reactor with fluid-structure interaction: Part I: Seismic loading, fluid added mass and added stiffness effects”, Nuclear Engineering and Design, 236:23 (2006), 2431–2443 | DOI
[5] J. F. Sigrist, D. Broc, C. Lainé, “Dynamic analysis of a nuclear reactor with fluid-structure interaction: Part II: Shock loading, influence of fluid compressibility”, Nuclear Engineering and Design, 237:3 (2007), 289–299 | DOI
[6] Y. Yu, E. Merzari, J. Solberg, “Coupled Calculation on Fluid Structure Interaction in Plate-Type Fuel Element”, Proc. of 26th Intern. Conf. on Nuclear Eng. (London, July 22–26, 2018), v. 8, Comp. Fluid Dynamics (CFD); Nuclear Education and Publ. Acceptance
[7] R. Cuamatzi-Meléndez, E. Flores-Cuamatzi, “Modelling fluid-structure interaction of water recirculating flow to predict damage and/or failure in a jet-pump assembly of a nuclear boiling water reactor”, Engineering Structures, 206 (2020), 110155 | DOI
[8] C. Michler, E. H. van Brummelen, S. J. Hulshoff, R. de Borst, “A monolithic approach to fluid-structure interaction”, Computers and Fluids, 33 (2004), 839–848 | DOI | Zbl
[9] W. G. Dettmer, D. Peric, “On the coupling between fluid flow and mesh motion in the modeling of fluid-structure interaction”, Comput. Mech., 43 (2008), 81–90 | DOI | Zbl
[10] O. O. Bendiksen, “Modern developments in computational aeroelasticity”, Proc. of Institution of Mechanical Engineers, Part G: J. of Aerospace Eng., 218:3 (2004), 157–177 | DOI
[11] H. M. Lee, O. J. Kwon, “Performance improvement of horizontal axis wind turbines by aerodynamic shape optimization including aeroelastic deformation”, Renewable Energy, 147:1 (2020), 2128–2140 | DOI
[12] A. Zhang, P. Sun, F. Ming et al., “Smoothed particle hydrodynamics and its applications in fluid-structure interactions”, J. Hydrodyn., 29 (2017), 187–216 | DOI
[13] I. B. Petrov, “Application of the grid-characteristic method for mathematical modeling in dynamical problems of deformable solid mechanics”, Computer Researchand Modeling, 11:6 (2019), 1041–1048 | DOI
[14] E. H. van Brummelen, R. de Borst, “On the nonnormality of subiteration for a fluid-structure interaction problem”, SIAM J. Sci. Comp., 27 (2005), 599–621 | DOI | MR | Zbl
[15] O. O. Bendiksen, “Nonunique solutions in transonic aeroelasticity”, Proc. of Int. Forum on Aeroelasticity and Structural Dynamics (Rome, Italy, 17–20 June 1997), 425–435
[16] O. O. Bendiksen, “Fluid-structure coupling requirements for time-accurate aeroelastic simulations”, Proc. of Symp. on Fluid-Structure Interaction Problems, ASME Winter Annual Meeting (Atlanta, GA, Nov. 1997), 1997
[17] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh system, Izdatelstvo Moskovskogo universiteta, M., 2013, 467 pp.
[18] V. M. Goloviznin, B. N. Chetverushkin, “New generation algorithms for computational fluid dynamics”, Comput. Math. Math. Phys., 58:8 (2018), 1217–1225 | DOI | MR | Zbl
[19] V. M. Goloviznin, S. A. Karabasov, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. of Comp. Phys., Acad. Press (US), 228:19 (2009), 7426–7451 | MR | Zbl