Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 65-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new conservative-characteristic method for solving problems of interaction of liquid and gas flows with deformable objects is built. The proposed method is a representative of the family of so-called monolithic (or seamless) methods, in which both the gas and the deformation of objects are calculated using a single numerical scheme that allows to naturally model the interface between gas and bodies. The resulting method is explicit, easily scalable, and uses Lagrangian coordinates to model deformation of bodies and mixed Euler-Lagrangian coordinates to model gas flow. A key feature of the method is a time-reversible algorithm for moving the computational grid, which allows to exclude the numerical dissipation of the scheme. The method is tested on a number of onedimensional and two-dimensional problems: the transition of acoustic vibrations from a gas to an elastic medium, an air impact on an elastic body, generation of spherical acoustic waves by an oscillating beam.
Keywords: conservative-characteristic methods, fluid-structure interaction (FSI), time reversibility, Euler-Lagrangian coordinates.
@article{MM_2021_33_10_a4,
     author = {V. M. Goloviznin and N. A. Afanasiev},
     title = {Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--82},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/}
}
TY  - JOUR
AU  - V. M. Goloviznin
AU  - N. A. Afanasiev
TI  - Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 65
EP  - 82
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/
LA  - ru
ID  - MM_2021_33_10_a4
ER  - 
%0 Journal Article
%A V. M. Goloviznin
%A N. A. Afanasiev
%T Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects
%J Matematičeskoe modelirovanie
%D 2021
%P 65-82
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/
%G ru
%F MM_2021_33_10_a4
V. M. Goloviznin; N. A. Afanasiev. Monolithic balance-characteristic method for solving problems of interaction of liquid and gas with deformable objects. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 65-82. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a4/

[1] Y. Bazilevs, M. Hsu, D. J. Benson et al., “Computational fluid-structure interaction: methods and application to a total cavopulmonary connection”, Comp. Mech., 45 (2009), 77–89 | DOI | MR | Zbl

[2] K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, T. E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Math. Models Methods Appl. Sci., 23 (2013), 307–338 | DOI | MR | Zbl

[3] A. Korobenko, M. C. Hsu, I. Akkerman, J. Tippmann, Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Math. Models Methods Appl. Sci., 23 (2013), 249–272 | DOI | MR | Zbl

[4] J. F. Sigrist, D. Broc, C. Lainé, “Dynamic analysis of a nuclear reactor with fluid-structure interaction: Part I: Seismic loading, fluid added mass and added stiffness effects”, Nuclear Engineering and Design, 236:23 (2006), 2431–2443 | DOI

[5] J. F. Sigrist, D. Broc, C. Lainé, “Dynamic analysis of a nuclear reactor with fluid-structure interaction: Part II: Shock loading, influence of fluid compressibility”, Nuclear Engineering and Design, 237:3 (2007), 289–299 | DOI

[6] Y. Yu, E. Merzari, J. Solberg, “Coupled Calculation on Fluid Structure Interaction in Plate-Type Fuel Element”, Proc. of 26th Intern. Conf. on Nuclear Eng. (London, July 22–26, 2018), v. 8, Comp. Fluid Dynamics (CFD); Nuclear Education and Publ. Acceptance

[7] R. Cuamatzi-Meléndez, E. Flores-Cuamatzi, “Modelling fluid-structure interaction of water recirculating flow to predict damage and/or failure in a jet-pump assembly of a nuclear boiling water reactor”, Engineering Structures, 206 (2020), 110155 | DOI

[8] C. Michler, E. H. van Brummelen, S. J. Hulshoff, R. de Borst, “A monolithic approach to fluid-structure interaction”, Computers and Fluids, 33 (2004), 839–848 | DOI | Zbl

[9] W. G. Dettmer, D. Peric, “On the coupling between fluid flow and mesh motion in the modeling of fluid-structure interaction”, Comput. Mech., 43 (2008), 81–90 | DOI | Zbl

[10] O. O. Bendiksen, “Modern developments in computational aeroelasticity”, Proc. of Institution of Mechanical Engineers, Part G: J. of Aerospace Eng., 218:3 (2004), 157–177 | DOI

[11] H. M. Lee, O. J. Kwon, “Performance improvement of horizontal axis wind turbines by aerodynamic shape optimization including aeroelastic deformation”, Renewable Energy, 147:1 (2020), 2128–2140 | DOI

[12] A. Zhang, P. Sun, F. Ming et al., “Smoothed particle hydrodynamics and its applications in fluid-structure interactions”, J. Hydrodyn., 29 (2017), 187–216 | DOI

[13] I. B. Petrov, “Application of the grid-characteristic method for mathematical modeling in dynamical problems of deformable solid mechanics”, Computer Researchand Modeling, 11:6 (2019), 1041–1048 | DOI

[14] E. H. van Brummelen, R. de Borst, “On the nonnormality of subiteration for a fluid-structure interaction problem”, SIAM J. Sci. Comp., 27 (2005), 599–621 | DOI | MR | Zbl

[15] O. O. Bendiksen, “Nonunique solutions in transonic aeroelasticity”, Proc. of Int. Forum on Aeroelasticity and Structural Dynamics (Rome, Italy, 17–20 June 1997), 425–435

[16] O. O. Bendiksen, “Fluid-structure coupling requirements for time-accurate aeroelastic simulations”, Proc. of Symp. on Fluid-Structure Interaction Problems, ASME Winter Annual Meeting (Atlanta, GA, Nov. 1997), 1997

[17] V. M. Goloviznin, M. A. Zaitsev, S. A. Karabasov, I. A. Korotkin, Novye algoritmy vychislitelnoi gidrodinamiki dlia mnogoprotsessornykh vychislitelnykh system, Izdatelstvo Moskovskogo universiteta, M., 2013, 467 pp.

[18] V. M. Goloviznin, B. N. Chetverushkin, “New generation algorithms for computational fluid dynamics”, Comput. Math. Math. Phys., 58:8 (2018), 1217–1225 | DOI | MR | Zbl

[19] V. M. Goloviznin, S. A. Karabasov, “Compact accurately boundary-adjusting high-resolution technique for fluid dynamics”, J. of Comp. Phys., Acad. Press (US), 228:19 (2009), 7426–7451 | MR | Zbl