Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_10_a3, author = {V. S. Zakharov and M. E. Zhukovskiy and M. B. Markov and S. V. Zakharov}, title = {On impact ionization of ions modeling in the distorted waves approximation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {51--64}, publisher = {mathdoc}, volume = {33}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/} }
TY - JOUR AU - V. S. Zakharov AU - M. E. Zhukovskiy AU - M. B. Markov AU - S. V. Zakharov TI - On impact ionization of ions modeling in the distorted waves approximation JO - Matematičeskoe modelirovanie PY - 2021 SP - 51 EP - 64 VL - 33 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/ LA - ru ID - MM_2021_33_10_a3 ER -
%0 Journal Article %A V. S. Zakharov %A M. E. Zhukovskiy %A M. B. Markov %A S. V. Zakharov %T On impact ionization of ions modeling in the distorted waves approximation %J Matematičeskoe modelirovanie %D 2021 %P 51-64 %V 33 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/ %G ru %F MM_2021_33_10_a3
V. S. Zakharov; M. E. Zhukovskiy; M. B. Markov; S. V. Zakharov. On impact ionization of ions modeling in the distorted waves approximation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 51-64. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/
[1] E. I. Popov, Spuskaemye apparaty, Znanie, M., 1985
[2] J. J. Thomson, “XLII. Ionization by moving electrified particles”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23:136 (1912), 449–457 | DOI
[3] W. Lotz, “Electron-impact ionization cross-sections for atoms up to $Z=108$”, Zeitschrift Phys., 232 (1970), 101 | DOI
[4] N. F. Mott, H. S.W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965
[5] H. Bethe, “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie”, Ann. Phys., 397 (1930), 325–400 | DOI
[6] U. Fano, “Ionizing collisions of very fast particles and the dipole strength of optical transitions”, Phys. Rev., 95:5 (1954), 1198 | DOI
[7] L. Vriens, “Binary-encounter electron-atom collision theory”, Phys. Rev., 141:1 (1966), 88 | DOI
[8] R. C. Stabler, “Classical impulse approximation for inelastic electron-atom collisions”, Phys. Rev., 133 (1964), A1268–A1273 | DOI
[9] M. Gryziński, “Two-Particle Collisions. I. General Relations for Collisions in the Laboratory System”, Phys. Rev., 138 (1965), A305, A332, A336 | DOI | MR
[10] C. Moller, “Zur Theorie des Durchgangs schneller Elektronen durch Materie”, Ann. Phys., 14 (1932), 531–585 | DOI
[11] S. M. Seltzer, “Cross Sections for Bremsstrahlung Production and Electron-Impact Ionization”, Monte Carlo Transport of Electrons and Photons, eds. T.M. Jenkins, W.R. Nelson, A. Rundi, Plenum, New York, 1988, 81 | DOI
[12] Y. K. Kim, M. E. Rudd, “Binary-encounter-dipole model for electron-impact ionization”, Phys. Rev. A, 50 (1994), 3954–3967 | DOI
[13] H. A. Bethe, R. Jackiw, Intermediate Quantum Mechanics, Westview Press, 1986 ; 1997 | MR | Zbl
[14] H. Bethe, “Bremsformel für Elektronen relativistischer Geschwindigkeit”, Zeitschrift für Physik, 76:5–6 (1932), 293–299 | DOI
[15] V. I. Ochkur, “Born-Oppenheimer method in the theory of collisions”, Soviet Physics JETP, 18:2 (1964), 503–508
[16] V. I. Ochkur, “Ionization of the hydrogen atom by electron impact with allowance for the exchange”, Sov. Phys. JETP, 20 (1965), 1175–1178
[17] I. I. Sobel-man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Springer, Berlin, 1981
[18] D. Bote, F. Salvat, “Calculations of inner-shell ionization by electron impact with the distorted-wave and plane-wave Born approximations”, Phys. Rev. A, 77 (2008), 042701 | DOI
[19] B. N. Chetverushkin i dr., “Issledovanie skhodimosti raschetov sechenii elektronnoi stolknovitelnoi ionizatsii v pribligenii iskagennikh voln”, Preprinti IPM im. M.V. Keldysha, 2018, 262, 24 pp. | DOI
[20] A. F. Nikiforov, V. G. Novikov, Quantum-Statistical Models of Hot Dense Matter Methods for Computation Opacity and Equation of State, Birkhäuser Verlag, Basel, 2005 | MR | Zbl
[21] B. F. Rozsnyai, “Relativistic Hartree-Fock-Slater calculations for arbitrary temperature and matter density”, Phys. Rev. A, 5:3 (1972), 1137 | DOI
[22] B. N. Chetverushkin i dr., “Raschet sechenii elektronnoi stolknovitelnoi ionizatsii atomov I ionov azota I kisloroda po modeli Khartri-Foka-Sletera”, Preprinti IPM im. M.V. Keldysha, 2018, 263, 24 pp. | DOI
[23] V. G. Novikov, A. D. Solomiannaia, V. S. Zakharov, “Kvantovo-statisticheskie metody ra-scheta opticheskich i termodinamicheskikh svoistv plotnoi plazmy”, Entsiklopediia nizkotemperaturnoi plazmi. Seriia B, v. VII-1, Ianus-K, M., 2008, 378–435
[24] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing, 1988 | MR
[25] V. S. Zakharov, V. G. Novikov, “Modeling of Ionization Composition in Argon Plasma with Fast Electrons”, Math. Models Comput. Simul., 1 (2009), 533–42 | DOI | Zbl
[26] http://www.kiam.ru/MVS/resourses/k100.html
[27] E. Brook, M. F.A. Harrison, A. C.H. Smith, “Measurements of the electron impact ionisation cross sections of He, C, O and N atoms”, J. Phys. B, 11:17 (1978), 3115 | DOI
[28] K. L. Bell et al., “Recommended data on the electron impact ionization of light atoms and ions”, J. Phys. Chem. Ref. Data, 12:4 (1983), 891–916 | DOI
[29] D. H. Crandall, “Electron Impact Ionization of Multicharged Ions”, Physica Scripta, 23:2 (1981), 153 | DOI
[30] D. H. Crandall, R. A. Phaneuf, D. A. Gregory, Electron Impact Ionization of Multicharged Ions, Report No. ORNL/TM-7020, Oakridge National Lab., Tennessee, USA, 1979