On impact ionization of ions modeling in the distorted waves approximation
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Atomic and ion properties calculated in the Hartree-Fock-Slater quantum-statistical model are used in the direct calculation of the differential and total cross sections of electron impact ionization of singly ionized oxygen and nitrogen atoms by the distorted wave approximation. The convergence of the cross sections justifies the applicability of the approximation for calculating the cross sections for impact ionization of ions by electrons in gas-plasma formations. The calculated cross sections are compared with analytical approximations and available experimental data. The calculation results show that the proposed method gives reliable results, which, combined with the applicability of the Hartree-Fock-Slater model in a wide range of temperatures and densities, allows it to be used in a wide range of energies and ion charges.
Keywords: collisional ionization, cross sections of atomic processes, distorted wave approximation, quantum statistical models of plasma.
@article{MM_2021_33_10_a3,
     author = {V. S. Zakharov and M. E. Zhukovskiy and M. B. Markov and S. V. Zakharov},
     title = {On impact ionization of ions modeling in the distorted waves approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/}
}
TY  - JOUR
AU  - V. S. Zakharov
AU  - M. E. Zhukovskiy
AU  - M. B. Markov
AU  - S. V. Zakharov
TI  - On impact ionization of ions modeling in the distorted waves approximation
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 51
EP  - 64
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/
LA  - ru
ID  - MM_2021_33_10_a3
ER  - 
%0 Journal Article
%A V. S. Zakharov
%A M. E. Zhukovskiy
%A M. B. Markov
%A S. V. Zakharov
%T On impact ionization of ions modeling in the distorted waves approximation
%J Matematičeskoe modelirovanie
%D 2021
%P 51-64
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/
%G ru
%F MM_2021_33_10_a3
V. S. Zakharov; M. E. Zhukovskiy; M. B. Markov; S. V. Zakharov. On impact ionization of ions modeling in the distorted waves approximation. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 51-64. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a3/

[1] E. I. Popov, Spuskaemye apparaty, Znanie, M., 1985

[2] J. J. Thomson, “XLII. Ionization by moving electrified particles”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 23:136 (1912), 449–457 | DOI

[3] W. Lotz, “Electron-impact ionization cross-sections for atoms up to $Z=108$”, Zeitschrift Phys., 232 (1970), 101 | DOI

[4] N. F. Mott, H. S.W. Massey, The theory of atomic collisions, Clarendon Press, Oxford, 1965

[5] H. Bethe, “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie”, Ann. Phys., 397 (1930), 325–400 | DOI

[6] U. Fano, “Ionizing collisions of very fast particles and the dipole strength of optical transitions”, Phys. Rev., 95:5 (1954), 1198 | DOI

[7] L. Vriens, “Binary-encounter electron-atom collision theory”, Phys. Rev., 141:1 (1966), 88 | DOI

[8] R. C. Stabler, “Classical impulse approximation for inelastic electron-atom collisions”, Phys. Rev., 133 (1964), A1268–A1273 | DOI

[9] M. Gryziński, “Two-Particle Collisions. I. General Relations for Collisions in the Laboratory System”, Phys. Rev., 138 (1965), A305, A332, A336 | DOI | MR

[10] C. Moller, “Zur Theorie des Durchgangs schneller Elektronen durch Materie”, Ann. Phys., 14 (1932), 531–585 | DOI

[11] S. M. Seltzer, “Cross Sections for Bremsstrahlung Production and Electron-Impact Ionization”, Monte Carlo Transport of Electrons and Photons, eds. T.M. Jenkins, W.R. Nelson, A. Rundi, Plenum, New York, 1988, 81 | DOI

[12] Y. K. Kim, M. E. Rudd, “Binary-encounter-dipole model for electron-impact ionization”, Phys. Rev. A, 50 (1994), 3954–3967 | DOI

[13] H. A. Bethe, R. Jackiw, Intermediate Quantum Mechanics, Westview Press, 1986 ; 1997 | MR | Zbl

[14] H. Bethe, “Bremsformel für Elektronen relativistischer Geschwindigkeit”, Zeitschrift für Physik, 76:5–6 (1932), 293–299 | DOI

[15] V. I. Ochkur, “Born-Oppenheimer method in the theory of collisions”, Soviet Physics JETP, 18:2 (1964), 503–508

[16] V. I. Ochkur, “Ionization of the hydrogen atom by electron impact with allowance for the exchange”, Sov. Phys. JETP, 20 (1965), 1175–1178

[17] I. I. Sobel-man, L. A. Vainshtein, E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines, Springer, Berlin, 1981

[18] D. Bote, F. Salvat, “Calculations of inner-shell ionization by electron impact with the distorted-wave and plane-wave Born approximations”, Phys. Rev. A, 77 (2008), 042701 | DOI

[19] B. N. Chetverushkin i dr., “Issledovanie skhodimosti raschetov sechenii elektronnoi stolknovitelnoi ionizatsii v pribligenii iskagennikh voln”, Preprinti IPM im. M.V. Keldysha, 2018, 262, 24 pp. | DOI

[20] A. F. Nikiforov, V. G. Novikov, Quantum-Statistical Models of Hot Dense Matter Methods for Computation Opacity and Equation of State, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[21] B. F. Rozsnyai, “Relativistic Hartree-Fock-Slater calculations for arbitrary temperature and matter density”, Phys. Rev. A, 5:3 (1972), 1137 | DOI

[22] B. N. Chetverushkin i dr., “Raschet sechenii elektronnoi stolknovitelnoi ionizatsii atomov I ionov azota I kisloroda po modeli Khartri-Foka-Sletera”, Preprinti IPM im. M.V. Keldysha, 2018, 263, 24 pp. | DOI

[23] V. G. Novikov, A. D. Solomiannaia, V. S. Zakharov, “Kvantovo-statisticheskie metody ra-scheta opticheskich i termodinamicheskikh svoistv plotnoi plazmy”, Entsiklopediia nizkotemperaturnoi plazmi. Seriia B, v. VII-1, Ianus-K, M., 2008, 378–435

[24] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing, 1988 | MR

[25] V. S. Zakharov, V. G. Novikov, “Modeling of Ionization Composition in Argon Plasma with Fast Electrons”, Math. Models Comput. Simul., 1 (2009), 533–42 | DOI | Zbl

[26] http://www.kiam.ru/MVS/resourses/k100.html

[27] E. Brook, M. F.A. Harrison, A. C.H. Smith, “Measurements of the electron impact ionisation cross sections of He, C, O and N atoms”, J. Phys. B, 11:17 (1978), 3115 | DOI

[28] K. L. Bell et al., “Recommended data on the electron impact ionization of light atoms and ions”, J. Phys. Chem. Ref. Data, 12:4 (1983), 891–916 | DOI

[29] D. H. Crandall, “Electron Impact Ionization of Multicharged Ions”, Physica Scripta, 23:2 (1981), 153 | DOI

[30] D. H. Crandall, R. A. Phaneuf, D. A. Gregory, Electron Impact Ionization of Multicharged Ions, Report No. ORNL/TM-7020, Oakridge National Lab., Tennessee, USA, 1979