Linear stability analysis for reaction–subdiffusion system of mixed order
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates behavior of two-component medium with subdiffusion transport and nonlinear chemical kinetics. Such system can be formally represented as coupled differential equations with Caputo derivatives of mixed order. It is shown by means of linear stability analysis that the interplay between derivative orders have a crucial impact on pattern selection. A new type of bifurcation, which is unobservable in analogous systems with standard derivatives, is demonstrated. These derivations are accompanied by direct numerical simulation.
Mots-clés : anomalous diffusion
Keywords: Turing patterns, Mittag–Leffler functions.
@article{MM_2021_33_10_a2,
     author = {D. A. Zenyuk and G. G. Malinetsky},
     title = {Linear stability analysis for reaction{\textendash}subdiffusion system of mixed order},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/}
}
TY  - JOUR
AU  - D. A. Zenyuk
AU  - G. G. Malinetsky
TI  - Linear stability analysis for reaction–subdiffusion system of mixed order
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 39
EP  - 50
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/
LA  - ru
ID  - MM_2021_33_10_a2
ER  - 
%0 Journal Article
%A D. A. Zenyuk
%A G. G. Malinetsky
%T Linear stability analysis for reaction–subdiffusion system of mixed order
%J Matematičeskoe modelirovanie
%D 2021
%P 39-50
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/
%G ru
%F MM_2021_33_10_a2
D. A. Zenyuk; G. G. Malinetsky. Linear stability analysis for reaction–subdiffusion system of mixed order. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 39-50. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/

[1] R. Klages, G. Radons, I.M. Sokolov (eds.), Anomalous transport, Wiley, Weinheim, 2008, 594 pp.

[2] M. Weiss, M. Elsner, F. Kartberg, T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells”, Biophysical Journal, 87:5 (2004), 3518–3524 | DOI

[3] R. Metzler, J. Klafter, “Boundary value problems for fractional diffusion equations”, Physica A, 278:1–2 (2000), 107–125 | DOI | MR

[4] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 541 pp. | MR | Zbl

[5] F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equation, 2007, 46 pp., arXiv: 0704.0320 | MR

[6] S. B. Yuste, E. Abad, K. Lindenberg, “Reactions in subdiffusive media and associated fractional equations”, Fractional dynamics, World Scientific, Singapore, 2012, 78–103 | MR

[7] V. A. Volpert, Y. Nec, A. A. Nepomnyashchy, “Fronts in anomalous diffusion-reaction systems”, Philosophical Transactions of the Royal Society A, 371:1982 (2013), 20120179 | DOI | MR | Zbl

[8] B. I. Henry, T. A.M. Langlands, S. L. Wearne, “Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations”, Physical Review E, 74:3 (2006), 031116 | DOI | MR

[9] R. Hoyle, Pattern formation, Cambridge University Press, New York, 2006, 422 pp. | MR | Zbl

[10] M. Turing, “The chemical basis of morphogenesis”, Philosophical Transaction of the Royal Society B, 237:641 (1952), 37–72 | MR | Zbl

[11] V. V. Gafiychuk, B. Y. Datsko, “Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order”, Phys. Rev. E, 77:6 (2008), 066210 | DOI | MR

[12] B. I. Henry, S. L. Wearne, “Existence of Turing instabilities in a two-species fractional reaction-diffusion system”, SIAM J. on Applied Mathematics, 62:3 (2002), 870–887 | DOI | MR | Zbl

[13] D. A. Zenyuk, G. G. Malinetsky, “Pattern formation in a reaction-diffusion system with time-fractional derivatives”, Mathematical Models and Computer Simul., 13:1 (2021), 126–133 | DOI | MR | MR | Zbl

[14] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon Breach Science publishers, Yverdon, 1993, 1012 pp. | MR | Zbl

[15] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer, Berlin, 2014, 441 pp. | MR | Zbl

[16] R. Garrappa, “Trapezoidal methods for fractional differential equations: Theoretical and computational aspects”, Mathematics and Computers in Simulation, 110 (2015), 96–112 | DOI | MR | Zbl

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes: the art of scientific computing, Cambridge University Press, New York, 2007, 1256 pp. | MR | Zbl

[18] De Wit, D. Lima, G. Dewel, P. Borckmans, “Spatiotemporal dynamics near a codimension-two point”, Physical Review E, 54:1 (1996), 261 | DOI

[19] T. S. Akhromeeva, S. P. Kurdiumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 544 pp. | MR

[20] S. A. Kashchenko, Dinamika modelei na osnove logisticheskogo uravneniia s zapazdyvaniem, URSS, M., 2021, 576 pp.