Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_10_a2, author = {D. A. Zenyuk and G. G. Malinetsky}, title = {Linear stability analysis for reaction{\textendash}subdiffusion system of mixed order}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {39--50}, publisher = {mathdoc}, volume = {33}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/} }
TY - JOUR AU - D. A. Zenyuk AU - G. G. Malinetsky TI - Linear stability analysis for reaction–subdiffusion system of mixed order JO - Matematičeskoe modelirovanie PY - 2021 SP - 39 EP - 50 VL - 33 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/ LA - ru ID - MM_2021_33_10_a2 ER -
D. A. Zenyuk; G. G. Malinetsky. Linear stability analysis for reaction–subdiffusion system of mixed order. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 39-50. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a2/
[1] R. Klages, G. Radons, I.M. Sokolov (eds.), Anomalous transport, Wiley, Weinheim, 2008, 594 pp.
[2] M. Weiss, M. Elsner, F. Kartberg, T. Nilsson, “Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells”, Biophysical Journal, 87:5 (2004), 3518–3524 | DOI
[3] R. Metzler, J. Klafter, “Boundary value problems for fractional diffusion equations”, Physica A, 278:1–2 (2000), 107–125 | DOI | MR
[4] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 541 pp. | MR | Zbl
[5] F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equation, 2007, 46 pp., arXiv: 0704.0320 | MR
[6] S. B. Yuste, E. Abad, K. Lindenberg, “Reactions in subdiffusive media and associated fractional equations”, Fractional dynamics, World Scientific, Singapore, 2012, 78–103 | MR
[7] V. A. Volpert, Y. Nec, A. A. Nepomnyashchy, “Fronts in anomalous diffusion-reaction systems”, Philosophical Transactions of the Royal Society A, 371:1982 (2013), 20120179 | DOI | MR | Zbl
[8] B. I. Henry, T. A.M. Langlands, S. L. Wearne, “Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations”, Physical Review E, 74:3 (2006), 031116 | DOI | MR
[9] R. Hoyle, Pattern formation, Cambridge University Press, New York, 2006, 422 pp. | MR | Zbl
[10] M. Turing, “The chemical basis of morphogenesis”, Philosophical Transaction of the Royal Society B, 237:641 (1952), 37–72 | MR | Zbl
[11] V. V. Gafiychuk, B. Y. Datsko, “Spatiotemporal pattern formation in fractional reaction-diffusion systems with indices of different order”, Phys. Rev. E, 77:6 (2008), 066210 | DOI | MR
[12] B. I. Henry, S. L. Wearne, “Existence of Turing instabilities in a two-species fractional reaction-diffusion system”, SIAM J. on Applied Mathematics, 62:3 (2002), 870–887 | DOI | MR | Zbl
[13] D. A. Zenyuk, G. G. Malinetsky, “Pattern formation in a reaction-diffusion system with time-fractional derivatives”, Mathematical Models and Computer Simul., 13:1 (2021), 126–133 | DOI | MR | MR | Zbl
[14] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon Breach Science publishers, Yverdon, 1993, 1012 pp. | MR | Zbl
[15] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Springer, Berlin, 2014, 441 pp. | MR | Zbl
[16] R. Garrappa, “Trapezoidal methods for fractional differential equations: Theoretical and computational aspects”, Mathematics and Computers in Simulation, 110 (2015), 96–112 | DOI | MR | Zbl
[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical recipes: the art of scientific computing, Cambridge University Press, New York, 2007, 1256 pp. | MR | Zbl
[18] De Wit, D. Lima, G. Dewel, P. Borckmans, “Spatiotemporal dynamics near a codimension-two point”, Physical Review E, 54:1 (1996), 261 | DOI
[19] T. S. Akhromeeva, S. P. Kurdiumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992, 544 pp. | MR
[20] S. A. Kashchenko, Dinamika modelei na osnove logisticheskogo uravneniia s zapazdyvaniem, URSS, M., 2021, 576 pp.