Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2021_33_10_a1, author = {O. Yu. Milyukova}, title = {MPI+OpenMP parallel implementation of conjugate gradient method with factored implicit preconditioners}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {19--38}, publisher = {mathdoc}, volume = {33}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a1/} }
TY - JOUR AU - O. Yu. Milyukova TI - MPI+OpenMP parallel implementation of conjugate gradient method with factored implicit preconditioners JO - Matematičeskoe modelirovanie PY - 2021 SP - 19 EP - 38 VL - 33 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a1/ LA - ru ID - MM_2021_33_10_a1 ER -
O. Yu. Milyukova. MPI+OpenMP parallel implementation of conjugate gradient method with factored implicit preconditioners. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 19-38. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a1/
[1] N. Munksgaard, “Solving sparse symmetric sets of linear equations by preconditioned conjugate gradients”, ACM Trans. Math. Software, 1980, no. 6, 206–219 | DOI | Zbl
[2] I. E. Kaporin, “High quality preconditionings of a general symmetric positive definite matrix based on its $U^TU+U^TR+R^TU$-decomposition”, Numer. Lin. Alg. Appl., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] A. D. Tuff, A. Jennings, “An iterative method for large systems of linear structural equations”, J. Num. Methods Eng., 1973, no. 7, 175–183 | DOI | MR | Zbl
[4] E. C. Anderson, Y. Saad, “Solving sparse triangular systems on parallel computers”, International J. of High Speed Computing, 1 (1989), 73–96 | DOI
[5] S. W. Hammond, R. Schreiber, “Efficient ICCG on a shared memory multiprocessor”, International J. High Speed Computing, 4 (1992), 1–21 | DOI
[6] M. M. Wolf, M. A. Heroux, E. G. Boman, “Factors impacting performance of 535 multithreaded sparse triangular solve”, Proc. of the 9th Inter. Conf. on High Performance Computing for Computational Sci., VECPAR'10, Springer-Verlag, Berlin–Heidelberg, 2011, 32–44 | Zbl
[7] E. Chow, H. Anzt, J. Scott, J. Dongarra, “Using Jacobi iterations and blocking for solving sparse triangular systems in incomplete factorization preconditioning”, Journal of Parallel and Distributed Computing, 2018, no. 119, 219–230 | DOI
[8] E. Chow, A. Patel, “Fine-grained parallel incomplete LU factorization”, SIAM J. Sci. Comput, 37 (2015), 169–193 | MR
[9] S. Cayrols, I. Duff, F. Lopes, Parallelization of the solve phase in a task-based Cholesky solver using a sequential task flow model, Technical Report RAL-TR-2018-008, Science Technology Facilities Council, UK, 2018, 27 pp. | Zbl
[10] I.E Kaporin, O. Iu. Miliukova, “MPI+OpenMP parallelnaya realizatsiia metoda sopriazhennykh gradientov s nekotorymi iavnymi predobuslovlivateliami”, Preprinty IPM im. M.V. Keldysha RAN, 2018, 008, 28 pp.
[11] I.E Kaporin, O. Iu. MiLiukova, “MPI+OpenMP realizatsiia metoda sopriazhennykh gradientov s faktorizovannymi iavnymi predobuslovlivateliami”, VANT Seriia Matematicheskoe modelirovanie fizicheskikh protsessov, 2018, no. 4, 57–69
[12] E. Chow, “Parallel implementation and practical use of sparse approximate inverse preconditioners with a priori sparsity patterns”, Inter. J. High Performance Comput. Appl., 15:1 (2001), 56–74 | DOI | MR
[13] O. Iu. MiLiukova, “MPI+OpenMP realizatsiia metoda sopriazhennykh gradientov s faktorizovannym predobuslovlivateliam”, Preprinty IPM im. M.V. Keldysha RAN, 2020, 031, 22 pp.
[14] O. Iu. MiLiukova, “MPI+OpenMP realizatsiia metoda sopriazhennykh gradientov s predobuslovlivateliam blochnogo Yakobi IC1”, Preprinty IPM im. M.V. Keldysha RAN, 2020, 083, 28 pp.
[15] I. S. Duff, G. A. Meurant, “The effect of ordering on preconditioned conjugate gradients”, BIT, 29 (1989), 625–657 | DOI | MR
[16] I. E. Kaporin, O. Iu. MiLiukova, “Nenolnoe obratnoe treugolnoe razlozhenie v parallelnyh algoritmah predobuslovlennogo metoda sopriazhennykh gradientov”, Preprinty IPM im. M.V. Keldysha RAN, 2017, 037, 28 pp.
[17] T. Davis, Y. F. Hu, “University of Florida sparse matrix collection”, ACM Trans. on Math. Software, 38:1 (2011) http://www.cise.ufl.edu/research/sparse/matrices | MR
[18] O. Axelsson, Iterative solution methods, Cambridge Univ. Press, New York, 1994 | MR | Zbl
[19] M. Tismenetsky, “A new preconditioning technique for solving large sparse linear systems”, Linear Algebra Appls., 154–156 (1991), 331–353 | DOI | MR | Zbl
[20] M. Suarjana, K. H. Law, “A robust incomplete factorization based on value and space constraints”, Int. J. Numer. Methods Engrg., 38 (1995), 1703–1719 | DOI | MR | Zbl
[21] T. A. Manteuffel, “An incomplete factorization technique for positive definite linear systems”, Math. Comput., 34 (1980), 473–497 | DOI | MR | Zbl
[22] I. Yamazaki, Z. Bai, W. Chen, R. Scalettar, “A High-Quality Preconditioning Technique for Multi-Length-Scale Symmetric Positive Definite Linear Systems”, Numer. Math. Theor. Meth. Appl., 2:2 (2009), 469–484 | DOI | MR | Zbl
[23] A. Jennigs, G. M. Malik, “Partial elimination”, J. Inst. Math. Appl., 20 (1977), 307–316 | DOI | MR
[24] I.E. Kaporin, “Using Chebyshev polynomials and approximate inverse triangular decomposition to pre-condition the conjugate gradient method”, Comp. Math. Math. Phys., 52:2 (2012), 1–26