An attitude C3 reference trajectory construction of the spacecraft
Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the problem of determining the reference trajectory passing through the fixed values of the orientation quaternion at given time points. Additionally, two sets of boundary conditions are considered. In the first case, in addition to the quaternion, the angular velocity is set at the node, and in the second case, the angular velocity, angular acceleration, and its jerk are set simultaneously. The proposed method of constructing the quaternion reference trajectory is based on the idea of representing angular motion as a sequence of elementary rotations. Due to the presented approach, the normalization condition is satisfied and the third degree of smoothness of the reference trajectory is provided over the entire period of motion. The last condition ensures the smoothness of the control function. It is assumed that this will prevent the excitation of vibrations in the flexible elements of the spacecraft, which is of great importance in applications. In this paper, auxiliary quaternions and interpolation polynomials are obtained for different sets of nodal conditions that allow the reference trajectory to pass through the specified points. Also, the angular velocity and acceleration are found as functions of time, which is necessary for constructing the control as a solution to the inverse problem of dynamics.
Mots-clés : satellite, attitude motion, quaternion, polynomial interpolation.
Keywords: reference trajectory, inverse control
@article{MM_2021_33_10_a0,
     author = {S. Tkachev and A. Shestoperov},
     title = {An attitude {C3} reference trajectory construction of the spacecraft},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {33},
     number = {10},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2021_33_10_a0/}
}
TY  - JOUR
AU  - S. Tkachev
AU  - A. Shestoperov
TI  - An attitude C3 reference trajectory construction of the spacecraft
JO  - Matematičeskoe modelirovanie
PY  - 2021
SP  - 3
EP  - 18
VL  - 33
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2021_33_10_a0/
LA  - ru
ID  - MM_2021_33_10_a0
ER  - 
%0 Journal Article
%A S. Tkachev
%A A. Shestoperov
%T An attitude C3 reference trajectory construction of the spacecraft
%J Matematičeskoe modelirovanie
%D 2021
%P 3-18
%V 33
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2021_33_10_a0/
%G ru
%F MM_2021_33_10_a0
S. Tkachev; A. Shestoperov. An attitude C3 reference trajectory construction of the spacecraft. Matematičeskoe modelirovanie, Tome 33 (2021) no. 10, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2021_33_10_a0/

[1] S. Tanygin, “Attitude interpolation”, Proceedings of the 13th AAS/AIAA Space Flight Mechanics Conference (Ponce, Puerto Rico, February 9–13, 2003), AAS 03-197, 20 pp.

[2] M. Yu. Ovchinnikov, S. S. Tkachev, A. I. Shestoperov, “Mathematical Model of a Satellite with an Arbitrary Number of Flexible Appendages”, Mathematical Models and Computer Simulations, 13:4 (2021), 638–647 | DOI | MR | Zbl

[3] M. Yu. Ovchinnikov, S. S. Tkachev, A. I. Shestopyorov, “Algorithms of Stabiliza-tion of a Spacecraft with Flexible Elements”, Journal of Computer and Systems Sciences International, 58 (2019), 474–490 | DOI | Zbl

[4] J. J. Kim, B. N. Agrawal, “Experiments on Jerk-Limited Slew Maneuvers of a Flexible Spacecraft”, Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit (Keystone, Colorado, 21–24 August, 2006), 2006, 1–20

[5] G. A. Boyarko, M. Romano, O. A. Yakimenko, “Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method”, Journal of Guidance Control Dynamics, 34:4 (2011), 1197–1208 | DOI

[6] A. Caubet, J. Biggs, “A Motion Planning Method for Spacecraft Attitude Maneuvers Using Single Polynomials”, Proceedings of the AAS/AIAA Astrodynamics Specialist Conference (Vail, CO, USA, August 9–13, 2015), AAS 15-627, 17 pp.

[7] M. D. Shuster, “A Survey of Attitude Representations”, The Journal of the Astronautical Sciences, 41:4 (1993), 439–517 | MR

[8] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, v. 1, Phizmatgiz, M., 1962, 464 pp. | MR

[9] D. F. Rogers, J. A. Adams, Mathematical Elements for Computer Graphics, 2nd ed., McGraw-Hill, New York, 1990, 512 pp.

[10] J. Ventura, M. Romano, U. Walter, “Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation”, Acta Astron, 110 (2015), 266–278 | DOI

[11] R. Aucoin, “Real-Time Optimal Slew Maneuver Planning for Small Satellites”, Proceedings of the AIAA/USU Conference on Small Satellites, 2019, SSC19-VIII-02, 12 pp.

[12] K. Shoemake, “Animating rotation with quaternion curves”, Computer Graphics, 19:3 (1985), 245–254 | DOI

[13] M. Kim, M. Kim, S. Shin, “A General Construction Scheme for Unit Quaternion Curves with Simple High Order Derivatives”, Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 1995, 369–376

[14] J. Yang, E. Stoll, “Time-optimal Spacecraft Reorientation with Attitude Constraints Based on A Two-stage Strategy”, Proceedings of the AAS/AIAA Astrodynamics Specialist Conference (Snowbird, UT, USA, August 19–23), AAS 18-201, 17 pp.

[15] C. Song, G. Islas, K. Schilling, “Inverse Dynamics based Model Predictive Control for Spacecraft Rapid Attitude Maneuver”, IFAC PapersOnLine, 52 (2019), 111–116 | DOI

[16] N. I. Amelkin, Dynamika tverdogo tela, Uchebnoe posobie, MPhTI, M., 2010, 80 pp.

[17] E. B. Dam, M. Koch, M. Lillholm, Quaternions, interpolation and animation, Technical Report DIKU-TR-98/5, 1998, 98 pp.

[18] E. I. Somov, S. A. Butyrin, “Analiticheskii sintez programmnogo dvizheniia kosmicheskikh apparatov nabliudeniia”, Izvestiia Samarskogo nauchnogo tsentra RAN, 6:1 (2004), 168–179