Numerical simulation of propane pyrolysis in a flow chemical reactor under the influence of constant external heating
Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 119-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical simulation of propane pyrolysis process in a flowing chemical reactor was performed in this work. In this case, chemical transformations are carried out due to external heating of the reaction zone. The velocity of gas motion in explored flows is much less then sound velocity in gas mixture, which motivates using the Navier–Stokes equations in approximation of low Mach numbers for describing the processes under study. The construction of a difference scheme is based on the use of the integro-interpolation method. To solve the equations of chemical kinetics, we used a specialized explicit second-order accuracy scheme with low computational complexity. To describe the chemical transformations of propane pyrolysis, the well-known kinetic scheme was used, which includes 30 elementary stages. However, in the work, for more accurate description of the process, the activation energy of one of the reaction stages was specified. The propane pyrolysis process was numerically simulated taking into account viscosity, diffusion and thermal conductivity for various temperatures of heating elements. The obtained results on propane conversion are compared with experimental data and other known numerical results for solving the problem under consideration. It is concluded that the developed numerical algorithm gives high reliability of the obtained results and can be applied in practice for modeling the processes under study.
Keywords: Navier–Stokes equations, subsonic flows, compact kinetic model, propane pyrolysis.
@article{MM_2020_32_9_a7,
     author = {I. M. Gubaydullin and R. V. Zhalnin and V. F. Masyagin and E. E. Peskova and V. F. Tishkin},
     title = {Numerical simulation of propane pyrolysis in a flow chemical reactor under the influence of constant external heating},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {32},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a7/}
}
TY  - JOUR
AU  - I. M. Gubaydullin
AU  - R. V. Zhalnin
AU  - V. F. Masyagin
AU  - E. E. Peskova
AU  - V. F. Tishkin
TI  - Numerical simulation of propane pyrolysis in a flow chemical reactor under the influence of constant external heating
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 119
EP  - 130
VL  - 32
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a7/
LA  - ru
ID  - MM_2020_32_9_a7
ER  - 
%0 Journal Article
%A I. M. Gubaydullin
%A R. V. Zhalnin
%A V. F. Masyagin
%A E. E. Peskova
%A V. F. Tishkin
%T Numerical simulation of propane pyrolysis in a flow chemical reactor under the influence of constant external heating
%J Matematičeskoe modelirovanie
%D 2020
%P 119-130
%V 32
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_9_a7/
%G ru
%F MM_2020_32_9_a7
I. M. Gubaydullin; R. V. Zhalnin; V. F. Masyagin; E. E. Peskova; V. F. Tishkin. Numerical simulation of propane pyrolysis in a flow chemical reactor under the influence of constant external heating. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 119-130. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a7/

[1] L. W. Dorodnitsyn, M. A. Kornilina, B. N. Chetverushkin, M. V. Yakobovskii, “Computer modelling of gas flows containing chemically active components”, Russian Journal of Physical Chemistry, 71:12 (1997), 2059–2065

[2] B. N. Chetverushkin, “Kineticheskie skhemy i vysokoproizvoditelnye vychisleniia v gazovoi dinamike”, Vychislitelnye tekhnologii, 7:6 (2002), 65–89 | MR | Zbl

[3] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, Math. Models Comp. Simulations, 8:5 (2016), 548–556 | MR | Zbl

[4] M. M. Krasnov, M. E. Ladonkina, V. F. Tishkin, “Realizatsiia razryvnogo metoda Galerkina v programmnom komplekse DGM”, Preprinty IPM im. M.V. Keldysha, 2018, 245, 31 pp.

[5] V. E. Borisov, A. A. Kuleshov, E. B. Savenkov, S. E. Yakush, “Programmnyi kompleks TCS 3D: matematicheskaia model”, Preprint IPM im. M.V. Keldysha, 2015, 006, 20 pp.

[6] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, M. L. Welcome, “A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations”, Journal of Computational Physics, 142:1 (1998), 1–46 | MR | Zbl

[7] M. S. Day, J. B. Bell, “Numerical simulation of laminar reacting flows with complex chemistry”, Combustion Theory and Modelling, 4:4 (2000), 535–556 | MR | Zbl

[8] V. N. Snytnikov, T. I. Mishchenko, Vl. N. Snytnikov, S. E. Malykhin, V. I. Avdeev, V. N. Parmon, “Autocatalytic gas-phase dehydrogenation of ethane”, Research on Chemical Intermediates, 38:3–5 (2012), 1133–1147

[9] N. Masyuk, A. Sherin, V. N. Snytnikov, Vl. N. Snytnikov, “Effect of Infrared Laser Radiation on Gas-Phase Pyrolysis of Ethane”, Journal of Analytical and Applied Pyrolysis, 2018

[10] O. A. Stadnichenko, V. N. Snytnikov, Vl. N. Snytnikov, “Mathematical modeling of multicomponent gas flows with energy intensive chemical processes by the example of ethane pyrolysis”, Numerical methods and programming, 15:4 (2014), 658–668

[11] O. A. Stadnichenko, V. N. Snytnikov, Vl. N. Snytnikov, N. S. Masyuk, “Mathematical modeling of ethane pyrolysis in a flow reactor with allowance for laser radiation effects”, Chemical Engineering Research and Design, 109 (2016), 405–413

[12] I. M. Gubaydullin, L. F. Nurislamova, “Chislennyi analiz dinamiki gazovogo potoka piroliza propana”, Vestnik Donskogo gos. tekh. un-ta, 18:1 (2018), 69–76 | MR

[13] L. F. Nurislamova, I. M. Gubaydullin, “Numerical analysis of parameter identifiability for a mathematical model of a chemical reaction”, Numerical methods and programming, 19:3 (2018), 282–292

[14] O. A. Stadnichenko, L. F. Nurislamova, N. S. Masyuk, Vl. N. Snytnikov, V. N. Snytnikov, “Radical mechanism for the gas-phase thermal decomposition of propane”, Reaction Kinetics, Mechanisms and Catalysis, 123:2 (2018), 607–624

[15] R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Modelirovanie techeniia mnogokomponentnogo reagiruiushchego gaza s ispolzovaniem algoritmov vysokogo poriadka tochnosti”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompiuternye nauki, 27:4 (2017), 608–617 | MR

[16] R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Modelirovanie techeniia mnogokomponentnogo khimicheski aktivnogo gaza na primere piroliza uglevodorodov”, Preprint IPM im. M.V. Keldysha, 2017, 101, 16 pp.

[17] A. A. Belov, N. N. Kalitkin, L. V. Kuzmina, “Modeling of chemical kinetics in gases”, Mathematical Models and Computer Simulations, 9:1 (2017), 24–39 | Zbl

[18] V. V. Rusanov, “The calculation of the interaction of non-stationary shock waves and obstacles”, USSR Comp. Math. and Mathematical Phys, 1:2 (1962), 304–320 | MR

[19] P. D. Lax, “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communications on Pure and Applied Mathematics, 7:1 (1954), 159–193 | MR | Zbl

[20] W. Tsang, “Chemical kinetic data base for combustion chemistry. Part 3. Propane”, J. Phys. Chem. Ref. Data, 17 (1988), 887–951

[21] R. V. Zhalnin, E. E. Peskova, O. A. Stadnichenko, V. F. Tishkin, “Matematicheskoe modelirovanie dinamiki mnogokomponentnogo gaza s ispolzovaniem WENO skhem na primere piroliza etana”, Zh. Srednevolzhskogo mat. obshchestva, 18:3 (2016), 98–106