Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_9_a5, author = {Y. A. Kriksin and V. F. Tishkin}, title = {Entropy stable discontinuous {Galerkin} method for {Euler} equations using non-conservative variables}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {87--102}, publisher = {mathdoc}, volume = {32}, number = {9}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a5/} }
TY - JOUR AU - Y. A. Kriksin AU - V. F. Tishkin TI - Entropy stable discontinuous Galerkin method for Euler equations using non-conservative variables JO - Matematičeskoe modelirovanie PY - 2020 SP - 87 EP - 102 VL - 32 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a5/ LA - ru ID - MM_2020_32_9_a5 ER -
%0 Journal Article %A Y. A. Kriksin %A V. F. Tishkin %T Entropy stable discontinuous Galerkin method for Euler equations using non-conservative variables %J Matematičeskoe modelirovanie %D 2020 %P 87-102 %V 32 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_9_a5/ %G ru %F MM_2020_32_9_a5
Y. A. Kriksin; V. F. Tishkin. Entropy stable discontinuous Galerkin method for Euler equations using non-conservative variables. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 87-102. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a5/
[1] E. Tadmor, “Entropy stable schemes”, Handbook of Numerical Anal., 17, 2016, 467–493 | MR
[2] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1973, 59 pp. | MR | Zbl
[3] S. Osher, “Riemann solvers, the entropy condition, and difference approximations”, SIAM J. Numer. Anal., 21 (1984), 217–235 | MR | Zbl
[4] F. Bouchut, C. Bourdarias, B. Perthame, “A MUSCL method satisfying all the numerical entropy inequalities”, Math. Comp., 65 (1996), 1439–1461 | MR | Zbl
[5] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems”, Acta Numerica, 2003, 451–512 | MR | Zbl
[6] F. Ismail, P. Roe, “Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks”, J. Comp. Phys., 228 (2009), 5410–5436 | MR | Zbl
[7] P. Chandrashekar, “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations”, Comm. Comp. Phys., 14:5 (2013), 1252–1286 | MR | Zbl
[8] U. S. Fjordholm, S. Mishra, E. Tadmor, “Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws”, SIAM J. Num. Anal., 50:2 (2012), 544–573 | MR | Zbl
[9] X. Cheng, Y. Nie, “A third-order entropy stable scheme for hyperbolic conservation laws”, J. Hyperbolic Differ. Equ., 13:1 (2016), 129–145 | MR | Zbl
[10] V. V. Ostapenko, “Symmetric compact schemes with higher order conservative artificial viscosities”, Comp. Math. Math. Phys., 7:1 (2002), 980–999 | MR | Zbl
[11] A. A. Zlotnik, “Entropy-conservative spatial discretization of the multidimensional quasi-gasdynamic system of equations”, Comp. Math. Math. Phys., 57:4 (2017), 706–725 | MR | Zbl
[12] G. J. Gassner, A. R. Winters, D. A. Kopriva, “A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations”, Appl. Math. Comp., 272 (2016), 291–308 | MR | Zbl
[13] B. Cockburn, “An introduction to the discontinuous Galerkin method for convection-dominated Problems”, Lecture Notes in Mathematics, 1697, 1997, 150–268 | MR
[14] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Application of averaging to smooth the solution in DG method”, Keldysh Institute preprints, 2017, 089, 32 pp.
[15] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, MM, 5:4 (2013), 346–349 | MR | Zbl
[16] M. E. Ladonkina, V. F. Tishkin, “Godunov method: a generalization using piecewise polynomial approximations”, Differential Equations, 51:7 (2015), 895–903 | MR | Zbl
[17] M. E. Ladonkina, V. F. Tishkin, “On Godunov-type methods of high order of accuracy”, Doklady Mathematics, 91:2 (2015), 189–192 | MR | Zbl
[18] V. F. Tishkin, V. T. Zhukov, E. E. Myshetskaya, “Justification of Godunov's scheme in the multidimensional case”, MM, 8:5 (2016), 548–556 | MR | Zbl
[19] Y. A. Kriksin, V. F. Tishkin, “Entropic regularization of Discontinuous Galerkin method in one-dimensional problems of gas dynamics”, Keldysh Institute preprints, 2018, 100, 22 pp.
[20] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Verification of an entropic regularization method for discontinuous Galerkin schemes applied to hyperbolic equations”, Keldysh Institute preprints, 2019, 018, 25 pp.
[21] M. D. Bragin, Y. A. Kriksin, V. F. Tishkin, “Ensuring the entropy stability of the discontinuous Galerkin method in gasdynamics problems”, Keldysh Institute preprints, 2019, 051, 22 pp.
[22] A. C. Robinson et al., “ALEGRA: An Arbitrary Lagrangian-Eulerian Multimaterial, Multiphysics Code”, 46th AIAA Aerospace Sciences Meeting and Exhibit (7–10 January 2008, Reno, Nevada), AIAA 2008-1235, 2008–1235 | DOI
[23] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, G. P. Prokopov, Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976, 400 pp. | MR
[24] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjögreen, “On Godunov-type methods near low densities”, J. Comp. Phys., 92:2 (1991), 273–295 | MR | Zbl
[25] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Comp. Phys., 27:1 (1978), 1–31 | MR | Zbl
[26] A. V. Rodionov, “A comparison of the CABARET and MUSCL-type schemes”, Mathematical Models and Computer Simulations, 6:2 (2014), 203–225 | MR | Zbl