Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_9_a3, author = {A. I. Lobanov and F. H. Mirov}, title = {Difference schemes for drain transfer equation based on space of undefined coefficients analysis}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--72}, publisher = {mathdoc}, volume = {32}, number = {9}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a3/} }
TY - JOUR AU - A. I. Lobanov AU - F. H. Mirov TI - Difference schemes for drain transfer equation based on space of undefined coefficients analysis JO - Matematičeskoe modelirovanie PY - 2020 SP - 53 EP - 72 VL - 32 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a3/ LA - ru ID - MM_2020_32_9_a3 ER -
A. I. Lobanov; F. H. Mirov. Difference schemes for drain transfer equation based on space of undefined coefficients analysis. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 53-72. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a3/
[1] K. M. Magomedov, A. S. Kholodov, “The construction of difference schemes for hyperbolic equations based on characteristic relations”, USSR Comp. Math. Math. Physics, 9:2 (1969), 158–176 | DOI | MR | Zbl
[2] A.S. Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations”, USSR Comp. Math. Math. Physics, 18:6 (1978), 116–132 | DOI | MR | Zbl
[3] K. M. Magomedov, A. S. Kholodov, Grid-and-characteristics numerical methods, Nauka, M., 1988, 289 pp. | MR | MR
[4] A.I. Lobanov, “Difference Schemes in the Undetermined Coefficient Space and Dual Problems of Linear Programming”, Comp. Math. Math. Phys., 58:6 (2018), 827–839 | DOI | MR | Zbl
[5] A. I. Lobanov, “Finite difference schemes for linear advection equation solving under generalized approximation condition”, Computer Research and Modeling, 10:2 (2018), 181–193 | DOI
[6] A. I. Lobanov, F. Kh. Mirov, “A Hybrid Difference Scheme under Generalized Approximation Condition in the Space of Undetermined Coefficients”, Comp. Math. Math. Phys., 58:8 (2018), 1270–1279 | MR | Zbl
[7] A. V. Favorskaya, “Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves”, Computer Research and Modeling, 11:4 (2019), 653–673 | DOI | MR
[8] I. B. Petrov, A. V. Favorskaya, “Grid-characteristic method”, Innovations in Wave Processes Modeling and Decision Making. Grid characteristics method and applications, SIST, 90, Springer International Publishing AG, part of Springer Nature, 2018, 118–158 | DOI | MR
[9] A. A. Shananin, N. K. Obrosova, Ekonomicheskaya interpretatsia dvoistvennosti v zadachah lineinogo proggramirovaniya, RUDN University Publ., M., 2007, 36 pp. (in Russian)
[10] V. G. Zhadan, Metody optimizatsii, v. I, Vvedenie v vypukhlyi analiz i teoriyu optimizatsii, MFTI, M., 2014, 271 pp.
[11] O. M. Belotserkovskii, A. I. Panarin, V. V. Shchennikov, “The method of parametric correction of difference schemes”, USSR Comp. Math. Math. Phys., 24:1 (1984), 40–46 | MR
[12] A. I. Tolstykh, Kompaktnye i multioperatirnye approksimatsii vysokoi tochnosti dlya uravnenii v chastnyh proizvodnyh, Nauka, M., 2015, 349 pp. (in Russian)
[13] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, USSR Comp. Math. and Math. Physics, 2:6 (1963), 1355–1365 | DOI | MR | Zbl
[14] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comp. Math. and Math. Physics, 46:9 (2006), 1560–1588 | DOI | MR
[15] Ya. A. Kholodov, P. S. Utkin, A. S. Kholodov, I. V. Tsybulin, Monotonnye raznostnye schemy vysokogo poryadka approksimatsii dlya odnomernyh uravnenii giperbolicheskogo tipa, MFTI, M., 2015, 69 pp.