Numerical method for reconstructing the average positions of quantum particles in a molecular system
Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 20-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article develops a numerical method for solving the Schrodinger equation, proposed in the author's previous work. In the method described earlier, there was uncertainty in identifying the average positions of quantum particles in the molecular system; they were set for external reasons without considering the Schrodinger equation itself. In this paper, a list of procedures for numerical identification of the average positions (scattering centers) of particles of an arbitrary molecular system is formulated for the subsequent application of the Monte Carlo algorithm for solving the corresponding Schrodinger equation. Several examples of application of the proposed numerical procedures for calculating such molecular systems as atom, hydrogen molecule, water, benzene (in several modifications), as well as hypothetical multihydrogen are considered.
Keywords: Schrodinger equation, numerical methods, ordinary differential equations and Monte-Carlo method.
@article{MM_2020_32_9_a1,
     author = {K. E. Plokhotnikov},
     title = {Numerical method for reconstructing the average positions of quantum particles in a molecular system},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {32},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_9_a1/}
}
TY  - JOUR
AU  - K. E. Plokhotnikov
TI  - Numerical method for reconstructing the average positions of quantum particles in a molecular system
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 20
EP  - 34
VL  - 32
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_9_a1/
LA  - ru
ID  - MM_2020_32_9_a1
ER  - 
%0 Journal Article
%A K. E. Plokhotnikov
%T Numerical method for reconstructing the average positions of quantum particles in a molecular system
%J Matematičeskoe modelirovanie
%D 2020
%P 20-34
%V 32
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_9_a1/
%G ru
%F MM_2020_32_9_a1
K. E. Plokhotnikov. Numerical method for reconstructing the average positions of quantum particles in a molecular system. Matematičeskoe modelirovanie, Tome 32 (2020) no. 9, pp. 20-34. http://geodesic.mathdoc.fr/item/MM_2020_32_9_a1/

[1] K. E. Plokhotnikov, “About One Method of Numerical Solution of Schrodinger's Equation”, Mathematical Models and Computer Simulations, 12:2 (2020), 221–231 | MR | Zbl

[2] IU. I. Ozhigov, Konstruktivnaia fizika, NITS “Regiuliarnaia i khaoticheskaia dinamika”, M.–Izhevsk, 2010, 424 pp.

[3] N. F. Stepanov, Kvantovaia mekhanika i kvantovaia khimiia, Mir, M., 2001, 519 pp.

[4] Kim Jeongnim, A. T. Baczewski, T. D. Beaudet et al., “QMCPACK: An open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids”, J. of Physics Condensed Matter, 30:19 (2018) | DOI

[5] D. R. Hartree, The Calculation of Atomic Structures, Wiley Sons, New York, 1957 | MR | Zbl

[6] W. Kohn, “Nobel Lecture: Electronic structure of matter-wave functions and density functionals”, Reviews of Modern Physics, 71:5 (1999), 1253–1266 | MR

[7] V. V. Vedeniapin, T. S. Kazakova, V. Ia. Kiselevskaia-Babinina, B. N. Chetverushkin, “Schrödinger Equation as a Self-Consistent Field”, Doklady Mathematics, 97 (2018), 240–242 | MR | Zbl

[8] V. A. Fok, Nachala kvantovoi mekhaniki, Nauka, M., 1976, 376 pp.

[9] E. Clementi, D. L. Raimond, W. P. Reinhardt, “Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons”, J. of Chem. Phys., 47:4 (1967), 1300–1307

[10] A. V. Eletskii, B. M. Smirnov, “Fullerenes and carbon structures”, Physics-Uspekhi, 38:9 (1995), 935–964

[11] http://extremelearning.com.au/evenly-distributing-points-on-a-sphere/